Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Contribute to Discovery of Gamma Rays from Starburst Galaxy

04.11.2009
Iowa State University astrophysicists contributed to the recent discovery that a galaxy quickly creating new stars is also a source of high energy gamma rays.

The discovery has just been published by the journal Nature. The study reports that researchers using the VERITAS array of four telescopes at the Fred Lawrence Whipple Observatory in Arizona have detected gamma rays of a trillion electron volts coming from the M 82 galaxy. The corresponding author of the article is Wystan Benbow of the Harvard-Smithsonian Center for Astrophysics and the Whipple Observatory.

Researchers discovered cosmic rays (mostly hydrogen nuclei) from space nearly a century ago and have developed theories about their origins in supernova remnants and star-forming galaxies, but hadn't found evidence to support those theories.

"This is a step toward solving a 100-year-old puzzle in cosmic ray physics," said Frank Krennrich, an Iowa State professor of physics and astronomy and a collaborator on the VERITAS project.

Gamma rays are high energy electromagnetic radiation. The rays discovered by the VERITAS researchers have a trillion times the energy of visible light. M 82 is a galaxy in the direction of the Ursa Major constellation that's 12 million light years from Earth. It is classified as a starburst galaxy. Such galaxies are colliding with other galaxies, causing shockwaves that compress gases and create stars at very high rates.

"What this shows is that there is a strong connection between a galaxy with high star formation, high gas density and the production of cosmic rays," Krennrich said.

But Krennrich said there's more work to be done to definitively trace gamma rays to cosmic rays in starburst galaxies.

Researchers believe more knowledge of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced and answer questions about the formation of stars and galaxies.

Krennrich said one key to current gamma ray research is the VERITAS telescope system (that's the Very Energetic Radiation Imaging Telescope Array System). The $20 million instrument started operating in 2007 and is the world's most sensitive instrument for detecting gamma rays.

It's not easy to detect those rays. Even with their high energies, gamma rays can't penetrate the earth's atmosphere. When they hit the atmosphere, they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. Those showers move very fast. And they're not very bright.

VERITAS looks for the rays with four reflector disks 12 meters across that look like satellite dishes. The reflectors are covered with mirrors that direct light into cameras attached to the front of each disk. Each camera is about 7 feet across and contains about 500 tube-shaped photon detectors or pixels.

All those detectors were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. The assembly took about $1 million and a lot of work by Iowa State post-doctoral researchers Martin Schroedter and Tomoyuki Nagai.

The telescope system is based on techniques Iowa State researchers Richard Lamb and David Carter-Lewis helped develop in the 1980s.

And now Krennrich says researchers are contemplating the next generation of gamma ray detection systems.

Krennrich said researchers are assembling a worldwide collaboration to plan and build a $300 million, 36-telescope array. The new instrument would be known as AGIS (the Advanced Gamma-ray Imaging System) and would be 10 times more sensitive than VERITAS.

Krennrich said Iowa State researchers are working on image-recognizing technology for the AGIS system that would help researchers by automatically separating gamma ray events from background events.

The new instrument, Krennrich said, might finally produce the data that establishes the origins of gamma rays and cosmic rays.

Frank Krennrich | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>