Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research grant for development of positron pulses of unprecedented intensity

26.01.2017

The German DFG has granted support for the development of a pulsed positron source that will enable investigations of exotic states of matter and mixes of matter and antimatter.

The German research foundation DFG (Deutsche Forschungsgemeinschaft) has granted 750,000 euros for the research project “Creation of intense positron pulses on NEPOMUC” under its program “New Instrumentation for Research”. The project is a collaboration between the University of Greifswald, the Max Planck Institute for Plasma Physics (IPP), and the Technical University of Munich (TUM).


The positron source in Garching, where the new positron pulse source will be installed and operated. The reactor pool of FRM II is seen in the back (brown).

Photo: TUM, Bernhard Ludewig


The Garching-Greifswald positron pulse group. From left to right: Prof. Dr. Lutz Schweikhard, Prof. Dr. Thomas Sunn Pedersen, Dr. Christoph Hugenschmidt.

Photo: IPP

The three research institutions will develop a device to accumulate and store positrons and deliver these in pulses of unprecedented intensity. These will serve as tools to investigate a range of phenomena in physics, and are likely to open up new areas of experimental research.

Positrons, the positively charged anti-particles of electrons, are valuable analysis tools for physics. The strongest positron source in the world, delivering one billion positrons per second, NEPOMUC (NEutron-induced POsitron source MUniCh), is housed in Garching, Germany, at the TUM research neutron source FRM II.

The goal of the new project is to develop and then deploy a device that can accumulate positrons and then deliver them in intensive pulses to various experiments. The initial development will be done in Greifswald, at the University and IPP, and will then be integrated at NEPOMUC to expand its capabilities. “The planned multi-cell trap should make it possible to accumulate and deliver up to a trillion positrons in short, ultra-intense pulses” says Dr. Christoph Hugenschmidt, who is the lead TUM scientist in the collaboration. “We have already performed the detailed characterization of the NEPOMUC beam parameters needed for this, in collaboration with our IPP colleagues”.

The experience of the research group at the University of Greifswald with the trapping of charged particles will prove a strong foundation for the development of the positron trap. “We have developed and operated smaller traps with a variety of charged particles for decades. Recently, in collaboration with IPP, we have confined electrons in one of our superconducting magnets for up to an hour. This gives us confidence to go forward with these ambitious plans for positron storage and accumulation”, says Prof. Lutz Schweikhard from the Institute of Physics at the University of Greifswald.

The intense positron pulses will allow for new areas of research, including new types of experiments. This may include more efficient production of antihydrogen, tests of the fundamental symmetry between matter and antimatter, or the production of large amounts of positronium, an exotic matter-antimatter atom consisting of an electron and a positron.

The research activity is particularly central for the initial creation of confined electron-positron plasmas. Such matter-antimatter plasmas will have exceptional properties. “We are currently working on the development of a superconducting levitated dipole for confinement of electron-positron plasmas” says Prof. Thomas Sunn Pedersen, a co-Director at IPP. “We have already injected positrons into a similar magnetic configuration with over 90 per cent efficiency”. Thus, in addition to co-developing the positron pulse facility, IPP will be one of its first users.

Background information

In the NEPOMUC (NEutron-induced POsitron source MUniCh), neutrons from FRM-II impinge on a cadmium target which emits copious amounts of gamma rays. The energy of the gamma rays is converted into mass: electron-positron pairs are created. The electrons are filtered away with electric fields, and a positron beam is formed which can then be used for fundamental physics and materials research.

Joint press release of the Max Planck Institute for Plasmaphysics, the Technical University of Munich and the University of Greifswald

Isabella Milch | Max-Planck-Institut für Plasmaphysik
Further information:
http://www.ipp.mpg.de/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>