Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University helps map the universe

20.09.2007
The University of Manchester is developing high-speed data crunching technology that will be crucial to the success of one of the greatest scientific projects of the 21st century.

The £1.1 billion (Euro 1.5bn) Square Kilometre Array (SKA) radio telescope will be around 200 times bigger and 100,000 times more powerful than the famous landmark Lovell radio telescope at Jodrell Bank.

This visionary global project will allow astronomers to collect information over one million square metres - the equivalent of around 200 football pitches.

It will give astronomers the ability to probe the early Universe, test Einstein’s theory of relativity, learn more about mysterious dark matter and energy – and even search for signs of alien life.

The University is leading the UK’s involvement in the SKA’s development through a Euro 38m European design study known as SKADS.

Engineers are working on a sophisticated all-digital system to process the information gathered by the giant telescope and turn the torrents of data into a detailed map of the sky.

Researchers in the schools of Physics and Astronomy and Electrical and Electronic Engineering are working on the technology for an ‘aperture array’, which will be composed of tens of thousands of small antenna fixed to the ground. The completed SKA will consist of around 250 aperture arrays.

Time delays will be used to match up the signals received by each antenna and turn them into a single large ‘beam’ – digitally reproducing what currently happens when the Lovell dish is pointed in a specific direction.

By adding up the signals in different ways, the proposed aperture array will allow many ‘beams’ to be created at the same time,

So unlike the big Lovell dish, which can only physically point in one direction at once, the SKA will be able to ‘point’ in many different directions at the same time and cover a huge area of the sky.

This new approach will allow many astronomers to look at the sky in different directions at the same time – adding to the effectiveness of the telescope and the financial investment.

The Microelectronics and Nanostructures research group in The School of Electrical and Electronic Engineering, led by Professor Mo Missous, is designing and fabricating receiver components and ultra high-speed analogue-to-digital converters using special semiconductor technology developed internally.

The Microwave and Communication Systems group, led by Professor Tony Brown, is developing the very high performance antenna elements and array layout required for the system to work successfully.

In developing the proposed all-digital system, engineers face a huge challenge in developing a system that can simultaneously handle data gathered by around 128,000 receivers – two receivers in each of 64,000 elements.

To assist with the project, a Joint Study Agreement has been signed between the University of Manchester and IBM – a partnership that will give the University access to the most advanced real-time processing systems available.

Engineers are currently working with researchers based at IBM’s Thomas J Watson Research Center in the United States to design the advanced processing systems required for the SKA.

They will look across the range of IBM's high-speed multi-core processing technologies for the solution that is best suited to their needs.

Dr Andrew Faulkner of the University’s Jodrell Bank Observatory, who is Project Engineer for SKADS, said: “We are looking at processing an enormous amount of data at astonishing speeds and then stitching it all together to make an system of unprecedented capability.”

Prof Peter Wilkinson from The School of Physics and Astronomy and UK SKADS programme leader added: “The SKA is designed to be a discovery instrument. There will be a huge harvest of fundamental science from locating enormous numbers of distant galaxies using the faint radio emission from hydrogen gas. But this new telescope will be so big and will be able to operate in so many different ways that it’s bound to find things we haven’t anticipated. This is why the prospect of the SKA is so exciting.”

“IBM Research's participation in the SKA project is very exciting and the challenge of designing its data processing systems will bring a whole range of new ideas to our multi-core research," said David Cohn, director, Business Informatics, IBM Research.

Professor John Perkins, Vice President and Dean of the Faculty of Engineering and Physical Science (EPS) at The University of Manchester, said: “The SKA looks set to become one of the great scientific projects of the 21st century and this latest exciting collaboration with IBM can only strengthen our relationship.”

As part of the SKADS project, a total of £10m of development funding has been earmarked for the UK, including £8m from the Science and Technology Facilities Council (formerly PPARC).

The University of Manchester has received £3.5m to spearhead the research effort, in a close collaboration with Universities of Oxford and Cambridge.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>