Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University helps map the universe

20.09.2007
The University of Manchester is developing high-speed data crunching technology that will be crucial to the success of one of the greatest scientific projects of the 21st century.

The £1.1 billion (Euro 1.5bn) Square Kilometre Array (SKA) radio telescope will be around 200 times bigger and 100,000 times more powerful than the famous landmark Lovell radio telescope at Jodrell Bank.

This visionary global project will allow astronomers to collect information over one million square metres - the equivalent of around 200 football pitches.

It will give astronomers the ability to probe the early Universe, test Einstein’s theory of relativity, learn more about mysterious dark matter and energy – and even search for signs of alien life.

The University is leading the UK’s involvement in the SKA’s development through a Euro 38m European design study known as SKADS.

Engineers are working on a sophisticated all-digital system to process the information gathered by the giant telescope and turn the torrents of data into a detailed map of the sky.

Researchers in the schools of Physics and Astronomy and Electrical and Electronic Engineering are working on the technology for an ‘aperture array’, which will be composed of tens of thousands of small antenna fixed to the ground. The completed SKA will consist of around 250 aperture arrays.

Time delays will be used to match up the signals received by each antenna and turn them into a single large ‘beam’ – digitally reproducing what currently happens when the Lovell dish is pointed in a specific direction.

By adding up the signals in different ways, the proposed aperture array will allow many ‘beams’ to be created at the same time,

So unlike the big Lovell dish, which can only physically point in one direction at once, the SKA will be able to ‘point’ in many different directions at the same time and cover a huge area of the sky.

This new approach will allow many astronomers to look at the sky in different directions at the same time – adding to the effectiveness of the telescope and the financial investment.

The Microelectronics and Nanostructures research group in The School of Electrical and Electronic Engineering, led by Professor Mo Missous, is designing and fabricating receiver components and ultra high-speed analogue-to-digital converters using special semiconductor technology developed internally.

The Microwave and Communication Systems group, led by Professor Tony Brown, is developing the very high performance antenna elements and array layout required for the system to work successfully.

In developing the proposed all-digital system, engineers face a huge challenge in developing a system that can simultaneously handle data gathered by around 128,000 receivers – two receivers in each of 64,000 elements.

To assist with the project, a Joint Study Agreement has been signed between the University of Manchester and IBM – a partnership that will give the University access to the most advanced real-time processing systems available.

Engineers are currently working with researchers based at IBM’s Thomas J Watson Research Center in the United States to design the advanced processing systems required for the SKA.

They will look across the range of IBM's high-speed multi-core processing technologies for the solution that is best suited to their needs.

Dr Andrew Faulkner of the University’s Jodrell Bank Observatory, who is Project Engineer for SKADS, said: “We are looking at processing an enormous amount of data at astonishing speeds and then stitching it all together to make an system of unprecedented capability.”

Prof Peter Wilkinson from The School of Physics and Astronomy and UK SKADS programme leader added: “The SKA is designed to be a discovery instrument. There will be a huge harvest of fundamental science from locating enormous numbers of distant galaxies using the faint radio emission from hydrogen gas. But this new telescope will be so big and will be able to operate in so many different ways that it’s bound to find things we haven’t anticipated. This is why the prospect of the SKA is so exciting.”

“IBM Research's participation in the SKA project is very exciting and the challenge of designing its data processing systems will bring a whole range of new ideas to our multi-core research," said David Cohn, director, Business Informatics, IBM Research.

Professor John Perkins, Vice President and Dean of the Faculty of Engineering and Physical Science (EPS) at The University of Manchester, said: “The SKA looks set to become one of the great scientific projects of the 21st century and this latest exciting collaboration with IBM can only strengthen our relationship.”

As part of the SKADS project, a total of £10m of development funding has been earmarked for the UK, including £8m from the Science and Technology Facilities Council (formerly PPARC).

The University of Manchester has received £3.5m to spearhead the research effort, in a close collaboration with Universities of Oxford and Cambridge.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>