Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University helps map the universe

20.09.2007
The University of Manchester is developing high-speed data crunching technology that will be crucial to the success of one of the greatest scientific projects of the 21st century.

The £1.1 billion (Euro 1.5bn) Square Kilometre Array (SKA) radio telescope will be around 200 times bigger and 100,000 times more powerful than the famous landmark Lovell radio telescope at Jodrell Bank.

This visionary global project will allow astronomers to collect information over one million square metres - the equivalent of around 200 football pitches.

It will give astronomers the ability to probe the early Universe, test Einstein’s theory of relativity, learn more about mysterious dark matter and energy – and even search for signs of alien life.

The University is leading the UK’s involvement in the SKA’s development through a Euro 38m European design study known as SKADS.

Engineers are working on a sophisticated all-digital system to process the information gathered by the giant telescope and turn the torrents of data into a detailed map of the sky.

Researchers in the schools of Physics and Astronomy and Electrical and Electronic Engineering are working on the technology for an ‘aperture array’, which will be composed of tens of thousands of small antenna fixed to the ground. The completed SKA will consist of around 250 aperture arrays.

Time delays will be used to match up the signals received by each antenna and turn them into a single large ‘beam’ – digitally reproducing what currently happens when the Lovell dish is pointed in a specific direction.

By adding up the signals in different ways, the proposed aperture array will allow many ‘beams’ to be created at the same time,

So unlike the big Lovell dish, which can only physically point in one direction at once, the SKA will be able to ‘point’ in many different directions at the same time and cover a huge area of the sky.

This new approach will allow many astronomers to look at the sky in different directions at the same time – adding to the effectiveness of the telescope and the financial investment.

The Microelectronics and Nanostructures research group in The School of Electrical and Electronic Engineering, led by Professor Mo Missous, is designing and fabricating receiver components and ultra high-speed analogue-to-digital converters using special semiconductor technology developed internally.

The Microwave and Communication Systems group, led by Professor Tony Brown, is developing the very high performance antenna elements and array layout required for the system to work successfully.

In developing the proposed all-digital system, engineers face a huge challenge in developing a system that can simultaneously handle data gathered by around 128,000 receivers – two receivers in each of 64,000 elements.

To assist with the project, a Joint Study Agreement has been signed between the University of Manchester and IBM – a partnership that will give the University access to the most advanced real-time processing systems available.

Engineers are currently working with researchers based at IBM’s Thomas J Watson Research Center in the United States to design the advanced processing systems required for the SKA.

They will look across the range of IBM's high-speed multi-core processing technologies for the solution that is best suited to their needs.

Dr Andrew Faulkner of the University’s Jodrell Bank Observatory, who is Project Engineer for SKADS, said: “We are looking at processing an enormous amount of data at astonishing speeds and then stitching it all together to make an system of unprecedented capability.”

Prof Peter Wilkinson from The School of Physics and Astronomy and UK SKADS programme leader added: “The SKA is designed to be a discovery instrument. There will be a huge harvest of fundamental science from locating enormous numbers of distant galaxies using the faint radio emission from hydrogen gas. But this new telescope will be so big and will be able to operate in so many different ways that it’s bound to find things we haven’t anticipated. This is why the prospect of the SKA is so exciting.”

“IBM Research's participation in the SKA project is very exciting and the challenge of designing its data processing systems will bring a whole range of new ideas to our multi-core research," said David Cohn, director, Business Informatics, IBM Research.

Professor John Perkins, Vice President and Dean of the Faculty of Engineering and Physical Science (EPS) at The University of Manchester, said: “The SKA looks set to become one of the great scientific projects of the 21st century and this latest exciting collaboration with IBM can only strengthen our relationship.”

As part of the SKADS project, a total of £10m of development funding has been earmarked for the UK, including £8m from the Science and Technology Facilities Council (formerly PPARC).

The University of Manchester has received £3.5m to spearhead the research effort, in a close collaboration with Universities of Oxford and Cambridge.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>