Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A warm South Pole? Yes, on Neptune!

19.09.2007
Summer season on Neptune creates escape route for methane

An international team of astronomers using ESO's Very Large Telescope has discovered that the south pole of Neptune is much hotter than the rest of the planet. This is consistent with the fact that it is late southern summer and this region has been in sunlight for about 40 years.

The scientists are publishing the first temperature maps of the lowest portion of Neptune's atmosphere, showing that this warm south pole is providing an avenue for methane to escape out of the deep atmosphere.

"The temperatures are so high that methane gas, which should be frozen out in the upper part of Neptune's atmosphere (the stratosphere), can leak out through this region," said Glenn Orton, lead author of the paper reporting the results. "This solves a long-standing problem of identifying the source of Neptune's high stratospheric methane abundances."

The temperature at the south pole is higher than anywhere else on the planet by about 10 degrees Celsius. The average temperature on Neptune is about minus 200 degrees Celsius.

Neptune, the farthest planet of our solar system, is located about 30 times farther away from the Sun than Earth is. Only about 1/900th as much sunlight reaches Neptune as our planet. Yet, the small amount of sunlight it receives significantly affects the planet's atmosphere.

The astronomers found that these temperature variations are consistent with seasonal changes. A Neptunian year lasts about 165 Earth years. It has been summer in the south pole of Neptune for about 40 years now, and they predict that as winter turns to summer in the north pole, an abundance of methane will leak out of a warm north pole in about 80 years.

"Neptune's south pole is currently tilted toward the Sun, just like the Earth's south pole is tilted toward the Sun during summer in the Southern Hemisphere," explains Orton. "But on Neptune the antarctic summer lasts 40 years instead of a few months, and a lot of solar energy input during that time can make big temperature differences between the regions in continual sunlight and those with day-night variations."

"Neptune has the strongest winds of any planet in the Solar System; sometimes, the wind blows there at more than 2000 kilometres per hour. It is certainly not the place you would like to go on a holiday," he adds.

The new observations also reveal mysterious high-latitude 'hot spots' in the stratosphere that have no immediate analogue in other planetary atmospheres. The astronomers think that these hot spots are generated by upwelling gas from much deeper in the atmosphere.

Methane is not the primary constituent of Neptune's atmosphere, which, as a giant planet, is mostly composed of the light gases, hydrogen and helium. But it is the methane in Neptune's upper atmosphere that absorbs the red light from the Sun and reflects the blue light back into space, making Neptune appear blue.

The new results were obtained with the mid-infrared camera/spectrometer VISIR on ESO's VLT 8.2-m Unit Telescope 3 (Melipal).

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-41-07.html

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>