Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists establish 'spooky' quantum communication

07.09.2007
Physicists at the University of Michigan have coaxed two separate atoms to communicate with a sort of quantum intuition that Albert Einstein called "spooky."

In doing so, the researchers have made an advance toward super-fast quantum computing. The research could also be a building block for a quantum internet.

Scientists used light to establish what's called "entanglement" between two atoms, which were trapped a meter apart in separate enclosures (think of entangling like controlling the outcome of one coin flip with the outcome of a separate coin flip).

A paper on the findings appears in the Sept. 6 edition of the journal Nature.

"This linkage between remote atoms could be the fundamental piece of a radically new quantum computer architecture," said Professor Christopher Monroe, the principal investigator who did this research while at U-M, but is now at the University of Maryland. "Now that the technique has been demonstrated, it should be possible to scale it up to networks of many interconnected components that will eventually be necessary for quantum information processing."

David Moehring, the lead author of the paper who did this research as a U-M graduate student, says the most important feature of this experiment is the distance between the two atoms. Moehring graduated and now has a position at the Max-Planck-Institute for Quantum Optics in Germany.

"The separation of the qubits in our entangled state is the most important feature," Moehring said. "Localized entanglement has been performed in ion trap qubits in the past, but if one desires to build a scalable quantum computer network (or a quantum internet), the creation of entanglement schemes between remotely entangled qubit memories is necessary."

In this experiment, the researchers used two atoms to function as qubits, or quantum bits, storing a piece of information in their electron configuration. They then excited each atom, inducing electrons to fall into a lower energy state and emit one photon, or one particle of light, in the process.

The atoms, which were actually ions of the rare-earth element ytterbium, are capable of emitting two different types of photon of different wavelengths. The type of photon released by each atom indicates the particular state of the atom. Because of this, each photon was entangled with its atom.

By manipulating the photons emitted from each of the two atoms and guiding them to interact along a fiber optic thread, the researchers were able to detect the resulting photon clicks and entangle the atoms. Monroe says the fiber optic thread was necessary to establish entanglement of the atoms, but then the fiber could be severed and the two atoms would remain entangled, even if one were "(carefully) taken to Jupiter."

Each qubit's information is like a single bit of information in a conventional computer, which is represented as a 0 or a 1. Things get weird on the quantum scale, though, and a qubit can be either a 0, a 1, or both at the same time, Monroe says. Scientists call this phenomenon "superposition." Even weirder, scientists can't directly observe superposition, because the act of measuring the qubit affects it and forces it to become either a 0 or a 1.

Entangled particles can default to the same position once measured, for example always ending in 0,0 or 1,1.

"When entangled objects are measured, they always result in some sort of correlation, like always getting two coins to come up the same, even though they may be very far apart," Monroe said. "Einstein called this 'spooky action-at-a-distance,' and it was the basis for his nonbelief in quantum mechanics. But entanglement exists, and although very difficult to control, it is actually the basis for quantum computers."

Scientists could set the position of one qubit and know that its entangled mate will follow suit.

Entanglement provides extra wiring between quantum circuits, Monroe says. And it allows quantum computers to perform tasks impossible with conventional computers. Quantum computers could transmit provably secure encrypted data, for example. And they could factor numbers incredibly faster than today's machines, making most current encryption technology obsolete (most encryption today is based on the inability for man or machine to factor large numbers efficiently).

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://focuspfc.physics.lsa.umich.edu/

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>