Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory predicts aging process in DVDs, plexiglas, other polymer glasses

24.04.2007
Polymer glasses are versatile plastics widely used in applications ranging from aircraft windshields to DVDs.

Researchers at the University of Illinois have developed a theory that predicts how these materials age. The theory also explains why motions at the molecular level can have macroscopic consequences.

"Glasses, including polymer glasses, are essentially frozen liquids,"
said Kenneth S. Schweizer, the G. Ronald and Margaret H. Morris Professor of Materials Science at the University of Illinois. "They appear solid, but because they are frozen liquids, the molecules continually undergo small motions that lead to a time dependence of properties."

Three years ago, Schweizer and graduate student Erica Saltzman developed a theory that described the transition upon cooling of a polymeric material from a liquid to an amorphous solid or glass. The theory explained how the viscosity of a polymer glass changes dramatically over a narrow temperature range. The researchers reported that work in the July 22, 2004, issue of the Journal of Chemical Physics.

Now, in the April 20 issue of Physical Review Letters, Schweizer and postdoctoral research associate Kang Chen present a theory to describe the aging process in polymer glasses. The new theory predicts not only how polymer molecules move, but also the material properties, at a wide variety of times and temperatures.

Polymer glasses are plastics that possess unusual and technologically useful mechanical properties. Unlike most other types of solids, polymer glasses can possess high impact resistance and, even though they are stiff, can often be significantly deformed without breaking. They are usually inexpensive to make, and easily melted and molded into many shapes.

And, they're always on the move.

Unlike window glass, which melts at roughly 1,200 degrees above room temperature, polymer glasses have melting points much closer to room temperature. So close, in fact, that many polymer glasses retain some liquid-like properties at room temperature, including motion at the molecular level.

"The movements are so small and so slow, we can't see them without the aid of sophisticated measuring tools," Schweizer said. "Nevertheless, this residual motion can significantly change the material's mechanical and thermal properties over time."

As the material gradually reconfigures and approaches equilibrium at room temperature, the movements become slower and slower. Under sufficiently cold conditions, this "relaxation" time can become astronomically large, even longer than the age of the universe for some materials.

"Among other possible effects, the aging process causes polymer glasses to become stiffer and often more brittle," said Schweizer, who also is a professor of chemistry, of chemical and biomolecular engineering, and a researcher at the university's Frederick Seitz Materials Research Laboratory.

Over time, the molecules crowd closer together, increasing the density and changing the mechanical properties of the material.

"Through our theory we developed a way to relate the physical properties of a polymer glass to the time scale of molecular movement," Schweizer said. "This information is especially important in engineering applications where small changes in dimensions, stiffness or other properties can affect long-term performance or reliability."

The work was funded by the National Science Foundation.

Editor's note: To reach Kenneth Schweizer, call 217-333-6440; e-mail:
kschweiz@uiuc.edu.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0423aging.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>