Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red Supergiant Cauldrons let off steam

17.04.2007
Steamy clouds have been observed bubbling away from four massive stars known as red supergiants. A team from Jodrell Bank, using the MERLIN array and European and Global VLBI Networks, found that the stars are actually ‘steaming’ as they enter their final death throes, driving out thick clouds of water vapour immersed in more tenuous gas.

Dr Anita Richards, who is presenting results at the RAS National Astronomy Meeting in Preston on 17th April, said, “Red supergiants lose more than half their mass before ending their lives as supernovae. Our observations show that this doesn’t happen smoothly, like an onion shedding layers. We see water vapour clouds which are over-dense, over-magnetised and rapidly accelerated away from the star. They are embedded in a cooler, more diffuse gas producing distinctive emission from hydroxyl, a break-down product of water.”

The group studied ‘maser’ emissions from the gas clouds surrounding the star: molecules in the gas amplify and emit beams of microwave radiation in much the same way as a laser produces very narrow, bright beams of light. Water emits at 1.3 cm wavelength, under hot, dense conditions (around 1000 degrees Kelvin). Hydroxyl emission at 18.0 cm can only occur from cooler, less dense gas and it was very unexpected to detect it as close to two of the stars as the water masers. The only explanation seems to be that the water masers come from clumps where the gas density is, typically, 50 times higher than the rest of the wind from the star. Supporting evidence comes from measurements of the magnetic field strength associated with the hydroxyl masers, which is much weaker than that of the adjacent water masers, as is expected if the hydroxyl environment is more diffuse.

The water vapour clouds appear to be very dusty and are accelerating faster than the surrounding gas. Only a few of these steam clouds form each stellar period (several years), filling just a few percent of the volume of the maser shell around the star, but they contain most of the mass lost by the star.

In the study, the maser emissions from the water vapour appeared to show that the clouds had a lifetime of only a few decades, although clouds were observed at distances that would have taken about a century to reach. The puzzle was solved by comparing the MERLIN results with longer-term observations from the Puschino radio telescope in Russia, which revealed individual clouds winking off and back on again due to the fickle nature of maser excitation or beaming. Dr Anita Richards said, “These observations are intriguing because, from the size of the masing shell, we estimate that the water vapour clouds take about 100 years to bubble away into interstellar space, but we can only actually ‘see’ any particular cloud for a few years.”

The group hope to follow this up by using the e-MERLIN, eVLBI and ALMA networks of radio telescopes to trace the mass loss process back to the star to discover whether star-spots, convection cells, dust formation or some other mechanism gives birth to the clumps.

Anita Heward | alfa
Further information:
http://www.ras.org.uk//index.php?option=com_content&task=view&id=1180

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>