Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red Supergiant Cauldrons let off steam

17.04.2007
Steamy clouds have been observed bubbling away from four massive stars known as red supergiants. A team from Jodrell Bank, using the MERLIN array and European and Global VLBI Networks, found that the stars are actually ‘steaming’ as they enter their final death throes, driving out thick clouds of water vapour immersed in more tenuous gas.

Dr Anita Richards, who is presenting results at the RAS National Astronomy Meeting in Preston on 17th April, said, “Red supergiants lose more than half their mass before ending their lives as supernovae. Our observations show that this doesn’t happen smoothly, like an onion shedding layers. We see water vapour clouds which are over-dense, over-magnetised and rapidly accelerated away from the star. They are embedded in a cooler, more diffuse gas producing distinctive emission from hydroxyl, a break-down product of water.”

The group studied ‘maser’ emissions from the gas clouds surrounding the star: molecules in the gas amplify and emit beams of microwave radiation in much the same way as a laser produces very narrow, bright beams of light. Water emits at 1.3 cm wavelength, under hot, dense conditions (around 1000 degrees Kelvin). Hydroxyl emission at 18.0 cm can only occur from cooler, less dense gas and it was very unexpected to detect it as close to two of the stars as the water masers. The only explanation seems to be that the water masers come from clumps where the gas density is, typically, 50 times higher than the rest of the wind from the star. Supporting evidence comes from measurements of the magnetic field strength associated with the hydroxyl masers, which is much weaker than that of the adjacent water masers, as is expected if the hydroxyl environment is more diffuse.

The water vapour clouds appear to be very dusty and are accelerating faster than the surrounding gas. Only a few of these steam clouds form each stellar period (several years), filling just a few percent of the volume of the maser shell around the star, but they contain most of the mass lost by the star.

In the study, the maser emissions from the water vapour appeared to show that the clouds had a lifetime of only a few decades, although clouds were observed at distances that would have taken about a century to reach. The puzzle was solved by comparing the MERLIN results with longer-term observations from the Puschino radio telescope in Russia, which revealed individual clouds winking off and back on again due to the fickle nature of maser excitation or beaming. Dr Anita Richards said, “These observations are intriguing because, from the size of the masing shell, we estimate that the water vapour clouds take about 100 years to bubble away into interstellar space, but we can only actually ‘see’ any particular cloud for a few years.”

The group hope to follow this up by using the e-MERLIN, eVLBI and ALMA networks of radio telescopes to trace the mass loss process back to the star to discover whether star-spots, convection cells, dust formation or some other mechanism gives birth to the clumps.

Anita Heward | alfa
Further information:
http://www.ras.org.uk//index.php?option=com_content&task=view&id=1180

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>