Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find triple interactions of supermassive black holes to be common in early universe

11.01.2007
New cosmological computer simulations produced by a team of astronomers from Northwestern University, Harvard University and the University of Michigan show for the first time that supermassive black holes (SMBHs), which exist at the centers of nearly all galaxies, often come together during triple galaxy interactions.

Frederic Rasio, a theoretical astrophysicist and professor of physics and astronomy in the Weinberg College of Arts and Sciences at Northwestern, presented the findings today (Jan. 8) at the meeting of the American Astronomical Society in Seattle.

The theoretical results are of special interest because of the recent discovery by astronomers at the California Institute of Technology of a possible triple quasar, findings that also were reported at the Seattle meeting.

"SMBHs become visible as quasars when they accrete large quantities of gas from their host galaxies, releasing prodigious amounts of energy in radiation," said Rasio. "The observation of three quasars in very close proximity shows that the kinds of interactions predicted by our computer simulations are indeed taking place, even in the nearby, present-day universe."

The existence of binary SMBHs, formed when two galaxies come together, merge and bring together their central SMBHs, has been discussed by astronomers for many years. The new work reported by Rasio shows that interactions between three SMBHs are also quite frequent, occurring perhaps up to a few times per year within the observable universe. While the merger of a binary SMBH following the collision between two galaxies simply leads to the formation of a bigger SMBH at the center of a bigger galaxy, triple black hole interactions can be much more violent and interesting.

"Three is so much better than two because the dynamics of three gravitationally interacting bodies is chaotic, as opposed to the much more regular motion of two bodies simply orbiting each other," said Rasio.

These violent triple interactions were especially frequent at early cosmological times, when our universe was only about one-tenth of its present age, and galaxies were smaller and collided much more frequently than today. At that earlier epoch, galaxies were living in a very crowded environment, as the universe had yet to expand to its present size. Smaller galaxies merged together to form some of the much bigger galaxies we see today. Although slower today, this process is ongoing. Even our own galaxy, the Milky Way, will experience a "major merger" event when it collides with its nearest neighbor, the Andromeda galaxy, in about three billion years.

Triple encounters of SMBHs often end in the complete coalescence of an SMBH pair, guaranteeing a high cosmic merger rate of black holes. They can also lead to SMBH binaries being kicked out of their parent galaxies and wandering "naked" through the universe.

"Triple black hole systems undergo complex, chaotic interactions often ending in the high-velocity ejection of one component, often straight out of the host galaxy," said Loren Hoffman, a doctoral student at Harvard and a member of the research team.

"The detection of wandering black hole binaries flying in empty space would give us a unique signature of triple interactions in the early universe," said team member Marta Volonteri, assistant professor of astronomy at the University of Michigan. "Gravitational waves emission seems to be the only way of spotting these wandering binaries."

Merging SMBH binaries are key sources of gravitational radiation that astronomers hope to detect with future observatories such as the Laser Interferometer Space Antenna (LISA), a billion-dollar joint venture of NASA and the European Space Agency, which is currently in a design phase and is expected to begin observations in or around 2017.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>