Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find triple interactions of supermassive black holes to be common in early universe

11.01.2007
New cosmological computer simulations produced by a team of astronomers from Northwestern University, Harvard University and the University of Michigan show for the first time that supermassive black holes (SMBHs), which exist at the centers of nearly all galaxies, often come together during triple galaxy interactions.

Frederic Rasio, a theoretical astrophysicist and professor of physics and astronomy in the Weinberg College of Arts and Sciences at Northwestern, presented the findings today (Jan. 8) at the meeting of the American Astronomical Society in Seattle.

The theoretical results are of special interest because of the recent discovery by astronomers at the California Institute of Technology of a possible triple quasar, findings that also were reported at the Seattle meeting.

"SMBHs become visible as quasars when they accrete large quantities of gas from their host galaxies, releasing prodigious amounts of energy in radiation," said Rasio. "The observation of three quasars in very close proximity shows that the kinds of interactions predicted by our computer simulations are indeed taking place, even in the nearby, present-day universe."

The existence of binary SMBHs, formed when two galaxies come together, merge and bring together their central SMBHs, has been discussed by astronomers for many years. The new work reported by Rasio shows that interactions between three SMBHs are also quite frequent, occurring perhaps up to a few times per year within the observable universe. While the merger of a binary SMBH following the collision between two galaxies simply leads to the formation of a bigger SMBH at the center of a bigger galaxy, triple black hole interactions can be much more violent and interesting.

"Three is so much better than two because the dynamics of three gravitationally interacting bodies is chaotic, as opposed to the much more regular motion of two bodies simply orbiting each other," said Rasio.

These violent triple interactions were especially frequent at early cosmological times, when our universe was only about one-tenth of its present age, and galaxies were smaller and collided much more frequently than today. At that earlier epoch, galaxies were living in a very crowded environment, as the universe had yet to expand to its present size. Smaller galaxies merged together to form some of the much bigger galaxies we see today. Although slower today, this process is ongoing. Even our own galaxy, the Milky Way, will experience a "major merger" event when it collides with its nearest neighbor, the Andromeda galaxy, in about three billion years.

Triple encounters of SMBHs often end in the complete coalescence of an SMBH pair, guaranteeing a high cosmic merger rate of black holes. They can also lead to SMBH binaries being kicked out of their parent galaxies and wandering "naked" through the universe.

"Triple black hole systems undergo complex, chaotic interactions often ending in the high-velocity ejection of one component, often straight out of the host galaxy," said Loren Hoffman, a doctoral student at Harvard and a member of the research team.

"The detection of wandering black hole binaries flying in empty space would give us a unique signature of triple interactions in the early universe," said team member Marta Volonteri, assistant professor of astronomy at the University of Michigan. "Gravitational waves emission seems to be the only way of spotting these wandering binaries."

Merging SMBH binaries are key sources of gravitational radiation that astronomers hope to detect with future observatories such as the Laser Interferometer Space Antenna (LISA), a billion-dollar joint venture of NASA and the European Space Agency, which is currently in a design phase and is expected to begin observations in or around 2017.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>