Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers using Arecibo Telescope discover never-before-seen pulsar blasts in Crab Nebula

10.01.2007
Bizarre emission spectrum leads to speculation: Is this a third magnetic pole?

Astronomers and physicists using the Cornell-managed Arecibo Telescope in Puerto Rico have discovered radio interpulses from the Crab Nebula pulsar that feature never-before-seen radio emission spectra. This leads scientists to speculate this could be the first cosmic object with a third magnetic pole.

"We never see the strange frequency structure in the main pulse and we never see the really short blasts in the interpulse," said Tim Hankins, acting director of the Arecibo Observatory and a co-investigator on this research. "We fully expected the main pulse and interpulse to be spectrally identical, but what we found is that they are very different. This is the first time seeing this in a pulsar."

Hankins, who also is an emeritus professor of physics at New Mexico Tech in Socorro, N.M., will present a poster, "Radio Emission Signatures in the High Frequency Interpulse of the Crab Pulsar," which he made with Jean Eilek, New Mexico Tech professor of physics, on Jan. 8, 2007, at the American Astronomical Society (AAS) convention in Seattle.

"This is a cool result," said Eilek. "The fact that the 'left hand' and the 'right hand' of the pulsar – or the north and south magnetic poles – don't know what each other is doing, is very striking. It knocks just about every existing theory of pulsar radio emission for a loop."

Because pulses from north and south poles should be identical, Eilek thinks this strange radio emission might be coming from another part of the pulsar. She speculates: "Maybe we've discovered an unknown, unexpected 'third magnetic pole' somewhere else in the star."

Pulsars are important to understand as they allow physicists to confirm Albert Einstein's Theory of Relativity. The magnetic and electrical fields of pulsars are far stronger than any laboratory can generate, and Hankins admits this is a difficult physics problem to understand.

In the case of the Crab Nebula pulsar, located in the constellation Taurus, some 6,300 light years from Earth, the numbers boggle the mind: Plasma clouds in the pulsar's atmosphere send out the radio emission blasts in times as short as four-tenths of a nanosecond. This plasma cloud is smaller than a soccer ball. During their short lifetimes, their blasts of radio emission can be as powerful as 10 percent of the power of our sun

"These strange emission features are not showing up in other pulsars," says Eilek. The researchers have been using Arecibo on several observation occasions, between 2004 and the present. They last conducted observations in December 2006. "Maybe the magnetic field is not as simple as we think. Right now, we're totally perplexed," she said.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>