Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers using Arecibo Telescope discover never-before-seen pulsar blasts in Crab Nebula

10.01.2007
Bizarre emission spectrum leads to speculation: Is this a third magnetic pole?

Astronomers and physicists using the Cornell-managed Arecibo Telescope in Puerto Rico have discovered radio interpulses from the Crab Nebula pulsar that feature never-before-seen radio emission spectra. This leads scientists to speculate this could be the first cosmic object with a third magnetic pole.

"We never see the strange frequency structure in the main pulse and we never see the really short blasts in the interpulse," said Tim Hankins, acting director of the Arecibo Observatory and a co-investigator on this research. "We fully expected the main pulse and interpulse to be spectrally identical, but what we found is that they are very different. This is the first time seeing this in a pulsar."

Hankins, who also is an emeritus professor of physics at New Mexico Tech in Socorro, N.M., will present a poster, "Radio Emission Signatures in the High Frequency Interpulse of the Crab Pulsar," which he made with Jean Eilek, New Mexico Tech professor of physics, on Jan. 8, 2007, at the American Astronomical Society (AAS) convention in Seattle.

"This is a cool result," said Eilek. "The fact that the 'left hand' and the 'right hand' of the pulsar – or the north and south magnetic poles – don't know what each other is doing, is very striking. It knocks just about every existing theory of pulsar radio emission for a loop."

Because pulses from north and south poles should be identical, Eilek thinks this strange radio emission might be coming from another part of the pulsar. She speculates: "Maybe we've discovered an unknown, unexpected 'third magnetic pole' somewhere else in the star."

Pulsars are important to understand as they allow physicists to confirm Albert Einstein's Theory of Relativity. The magnetic and electrical fields of pulsars are far stronger than any laboratory can generate, and Hankins admits this is a difficult physics problem to understand.

In the case of the Crab Nebula pulsar, located in the constellation Taurus, some 6,300 light years from Earth, the numbers boggle the mind: Plasma clouds in the pulsar's atmosphere send out the radio emission blasts in times as short as four-tenths of a nanosecond. This plasma cloud is smaller than a soccer ball. During their short lifetimes, their blasts of radio emission can be as powerful as 10 percent of the power of our sun

"These strange emission features are not showing up in other pulsars," says Eilek. The researchers have been using Arecibo on several observation occasions, between 2004 and the present. They last conducted observations in December 2006. "Maybe the magnetic field is not as simple as we think. Right now, we're totally perplexed," she said.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>