Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust particles tell story about birth of solar system

19.12.2006
Particulate materials captured from the comet Wild 2 have revealed clues about the birth of our solar system that counter some of the basic theories that the solar nebular is gently collapsing inward to form the sun and the planets.

The thousands of samples of dust, gathered from the Stardust mission, tell a story of a comet that formed in the Kuiper Belt, outside the orbit of Neptune, and only recently entered the inner regions of the solar system.

Wild 2 spent most of its life orbiting in the Kuiper Belt, far beyond Neptune, and in 1974 had a close encounter with Jupiter that placed it into its current orbit. The Stardust spacecraft’s seven-year mission returned to earth earlier this year with particles that are the same material that accreted along with ice to shape the comet about 4.57 billion years ago, when the sun and planets formed.

But during its lifetime, Wild 2 gathered material that formed much closer to the sun.

"We’re talking about a mineral that forms around 3,000 degrees Kelvin, which means it formed close to the hot infant star," said John Bradley, director of the Laboratory’s Institute for Geophysics and Planetary Physics and the head of the Livermore Stardust team. "If we found it in the comet, then how the heck did it get out there""

The mineral in question is osbornite, which only has been found on earth in Russia.

More than 200 investigators worldwide including researchers from Lawrence Livermore will publish several papers in a series of analyses of the space dust in the Dec. 15 issue of the journal Science.

By using state-of-the-art technology, scientists from Lawrence Livermore National Laboratory have been able to determine the make-up of the tiny particles at the angstrom scale using the SuperSTEM (scanning transmission electron microscope).

The osbornite finding is an indication that during its infancy, the solar system was a very volatile locale in which objects in the inner area may have been ejected in bipolar outflows perpendicular to the solar accretion disc and rained down into the outer regions.

"It appears to have been a much more dynamic and perhaps even violent nebula environment than we expected," Bradley said.

And it is this mixing of the solar system that initially had scientists scratching their heads. In addition to outer solar system materials, the comet samples also contain pre-solar materials that in turn mean they must have been transported beyond the orbit of Neptune by a process that was capable of moving particles at least as large as 20 microns (a micron is 10 times smaller than a human hair).

The osbornite discovery supports the theory that large particles could be launched by a type of wind from a region within a few radii of the young sun and ballistically be transported above and below the midplane of the nebular disk. This wind model would transport these hot-formed particles from near the sun to the edge of the solar system where Wild 2 formed.

Most of the particles larger than a micron are made up of the silicate minerals olivine and pyroxene, also minerals that form at very high temperatures.

"It’s shaking up our view of the solar system condensation process," said Hope Ishii, one of the Livermore Stardust researchers. "It’s been pretty intense. It opens up a whole bunch of new questions."

In addition to the SuperSTEM, Livermore researchers used the Laboratory’s secondary electron microscope, nanoSIMS and Focused Ion Beam (FIB) technology to analyze the dust particles. Using the FIB, Livermore researchers Giles Graham and Nick Teslich were the first scientists to detect the craters containing miniscule particles in the collector foil. The foils contained the only examples found thus far of presolar material.

In addition to silicates and sulfides, Stardust samples contain organic materials dispersed around the impacts.

"We didn’t expect any organics to survive" from the impact and heat during the collection process, said Livermore researcher Sasa Bajt. "But we found a rich variety of organics that were both oxygen-rich and nitrogen rich compared to organics previously found in meteorites."

And those organics could point to the beginnings of life on Earth.

Stardust is a part of NASA’s series of Discovery missions and is managed by the Jet Propulsion Laboratory. Stardust launched in February 1999 and set off on three giant loops around the sun. It began collecting interstellar dust in 2000 and met Wild 2 in January 2004, when the spacecraft was slammed by millions of comet particles, nearly halting the mission. It is the first spacecraft to safely make it back to Earth with cometary dust particles in tow.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>