Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stardust particles tell story about birth of solar system

Particulate materials captured from the comet Wild 2 have revealed clues about the birth of our solar system that counter some of the basic theories that the solar nebular is gently collapsing inward to form the sun and the planets.

The thousands of samples of dust, gathered from the Stardust mission, tell a story of a comet that formed in the Kuiper Belt, outside the orbit of Neptune, and only recently entered the inner regions of the solar system.

Wild 2 spent most of its life orbiting in the Kuiper Belt, far beyond Neptune, and in 1974 had a close encounter with Jupiter that placed it into its current orbit. The Stardust spacecraft’s seven-year mission returned to earth earlier this year with particles that are the same material that accreted along with ice to shape the comet about 4.57 billion years ago, when the sun and planets formed.

But during its lifetime, Wild 2 gathered material that formed much closer to the sun.

"We’re talking about a mineral that forms around 3,000 degrees Kelvin, which means it formed close to the hot infant star," said John Bradley, director of the Laboratory’s Institute for Geophysics and Planetary Physics and the head of the Livermore Stardust team. "If we found it in the comet, then how the heck did it get out there""

The mineral in question is osbornite, which only has been found on earth in Russia.

More than 200 investigators worldwide including researchers from Lawrence Livermore will publish several papers in a series of analyses of the space dust in the Dec. 15 issue of the journal Science.

By using state-of-the-art technology, scientists from Lawrence Livermore National Laboratory have been able to determine the make-up of the tiny particles at the angstrom scale using the SuperSTEM (scanning transmission electron microscope).

The osbornite finding is an indication that during its infancy, the solar system was a very volatile locale in which objects in the inner area may have been ejected in bipolar outflows perpendicular to the solar accretion disc and rained down into the outer regions.

"It appears to have been a much more dynamic and perhaps even violent nebula environment than we expected," Bradley said.

And it is this mixing of the solar system that initially had scientists scratching their heads. In addition to outer solar system materials, the comet samples also contain pre-solar materials that in turn mean they must have been transported beyond the orbit of Neptune by a process that was capable of moving particles at least as large as 20 microns (a micron is 10 times smaller than a human hair).

The osbornite discovery supports the theory that large particles could be launched by a type of wind from a region within a few radii of the young sun and ballistically be transported above and below the midplane of the nebular disk. This wind model would transport these hot-formed particles from near the sun to the edge of the solar system where Wild 2 formed.

Most of the particles larger than a micron are made up of the silicate minerals olivine and pyroxene, also minerals that form at very high temperatures.

"It’s shaking up our view of the solar system condensation process," said Hope Ishii, one of the Livermore Stardust researchers. "It’s been pretty intense. It opens up a whole bunch of new questions."

In addition to the SuperSTEM, Livermore researchers used the Laboratory’s secondary electron microscope, nanoSIMS and Focused Ion Beam (FIB) technology to analyze the dust particles. Using the FIB, Livermore researchers Giles Graham and Nick Teslich were the first scientists to detect the craters containing miniscule particles in the collector foil. The foils contained the only examples found thus far of presolar material.

In addition to silicates and sulfides, Stardust samples contain organic materials dispersed around the impacts.

"We didn’t expect any organics to survive" from the impact and heat during the collection process, said Livermore researcher Sasa Bajt. "But we found a rich variety of organics that were both oxygen-rich and nitrogen rich compared to organics previously found in meteorites."

And those organics could point to the beginnings of life on Earth.

Stardust is a part of NASA’s series of Discovery missions and is managed by the Jet Propulsion Laboratory. Stardust launched in February 1999 and set off on three giant loops around the sun. It began collecting interstellar dust in 2000 and met Wild 2 in January 2004, when the spacecraft was slammed by millions of comet particles, nearly halting the mission. It is the first spacecraft to safely make it back to Earth with cometary dust particles in tow.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>