Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust particles tell story about birth of solar system

19.12.2006
Particulate materials captured from the comet Wild 2 have revealed clues about the birth of our solar system that counter some of the basic theories that the solar nebular is gently collapsing inward to form the sun and the planets.

The thousands of samples of dust, gathered from the Stardust mission, tell a story of a comet that formed in the Kuiper Belt, outside the orbit of Neptune, and only recently entered the inner regions of the solar system.

Wild 2 spent most of its life orbiting in the Kuiper Belt, far beyond Neptune, and in 1974 had a close encounter with Jupiter that placed it into its current orbit. The Stardust spacecraft’s seven-year mission returned to earth earlier this year with particles that are the same material that accreted along with ice to shape the comet about 4.57 billion years ago, when the sun and planets formed.

But during its lifetime, Wild 2 gathered material that formed much closer to the sun.

"We’re talking about a mineral that forms around 3,000 degrees Kelvin, which means it formed close to the hot infant star," said John Bradley, director of the Laboratory’s Institute for Geophysics and Planetary Physics and the head of the Livermore Stardust team. "If we found it in the comet, then how the heck did it get out there""

The mineral in question is osbornite, which only has been found on earth in Russia.

More than 200 investigators worldwide including researchers from Lawrence Livermore will publish several papers in a series of analyses of the space dust in the Dec. 15 issue of the journal Science.

By using state-of-the-art technology, scientists from Lawrence Livermore National Laboratory have been able to determine the make-up of the tiny particles at the angstrom scale using the SuperSTEM (scanning transmission electron microscope).

The osbornite finding is an indication that during its infancy, the solar system was a very volatile locale in which objects in the inner area may have been ejected in bipolar outflows perpendicular to the solar accretion disc and rained down into the outer regions.

"It appears to have been a much more dynamic and perhaps even violent nebula environment than we expected," Bradley said.

And it is this mixing of the solar system that initially had scientists scratching their heads. In addition to outer solar system materials, the comet samples also contain pre-solar materials that in turn mean they must have been transported beyond the orbit of Neptune by a process that was capable of moving particles at least as large as 20 microns (a micron is 10 times smaller than a human hair).

The osbornite discovery supports the theory that large particles could be launched by a type of wind from a region within a few radii of the young sun and ballistically be transported above and below the midplane of the nebular disk. This wind model would transport these hot-formed particles from near the sun to the edge of the solar system where Wild 2 formed.

Most of the particles larger than a micron are made up of the silicate minerals olivine and pyroxene, also minerals that form at very high temperatures.

"It’s shaking up our view of the solar system condensation process," said Hope Ishii, one of the Livermore Stardust researchers. "It’s been pretty intense. It opens up a whole bunch of new questions."

In addition to the SuperSTEM, Livermore researchers used the Laboratory’s secondary electron microscope, nanoSIMS and Focused Ion Beam (FIB) technology to analyze the dust particles. Using the FIB, Livermore researchers Giles Graham and Nick Teslich were the first scientists to detect the craters containing miniscule particles in the collector foil. The foils contained the only examples found thus far of presolar material.

In addition to silicates and sulfides, Stardust samples contain organic materials dispersed around the impacts.

"We didn’t expect any organics to survive" from the impact and heat during the collection process, said Livermore researcher Sasa Bajt. "But we found a rich variety of organics that were both oxygen-rich and nitrogen rich compared to organics previously found in meteorites."

And those organics could point to the beginnings of life on Earth.

Stardust is a part of NASA’s series of Discovery missions and is managed by the Jet Propulsion Laboratory. Stardust launched in February 1999 and set off on three giant loops around the sun. It began collecting interstellar dust in 2000 and met Wild 2 in January 2004, when the spacecraft was slammed by millions of comet particles, nearly halting the mission. It is the first spacecraft to safely make it back to Earth with cometary dust particles in tow.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>