Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable nuclear energy moves a step closer

12.12.2006
In the future a new generation of nuclear reactors will create energy, while producing virtually no long-lasting nuclear waste, according to research conducted by Wilfred van Rooijen, who will receive his Delft University of Technology PhD degree based on this research subject on Tuesday, 12 December.

Wilfred van Rooijen's research, conducted at the Reactor Institute Delft, focused on the nuclear fuel cycle and safety features of a Gas-cooled Fast Reactor (GFR), one of the so-called 'fourth generation' nuclear reactor designs. These designs have a sustainable character: they are economical in their use of nuclear fuel and are capable of rendering a great deal of their own nuclear waste harmless. The ability to actually build such reactors is however still in the very distant future.

The fourth generation GFR uses helium as a coolant at high temperatures. GFR's ultimate objective is to create a closed nuclear fuel cycle, in which only natural uranium is used as a raw material and in which the resulting waste consists of only nuclear fission products. Uranium and heavier isotopes, such as plutonium and americum, are recycled in the reactor and ultimately burned up (fissioned). In the reactors in use today, these heavy isotopes determine the long-term radioactivity of the nuclear waste. A closed nuclear fuel cycle therefore allows for maximum use of the raw materials, while at the same time substantially reducing the life-span of the waste.

This PhD research showed that it is possible to obtain a closed nuclear fuel cycle with a GFR. It also revealed that the GFR could use the waste materials of other light water reactors (LWR). The Gas-cooled Fast Reactor can therefore serve as an 'incinerator' of nuclear waste.

To increase the GFR's safety, special elements have been designed to automatically shut down the reactor during incidents. Van Rooijen's research has shown that with these elements the reactor is capable of withstanding incidents without damage to the nuclear fuel.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>