Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable nuclear energy moves a step closer

12.12.2006
In the future a new generation of nuclear reactors will create energy, while producing virtually no long-lasting nuclear waste, according to research conducted by Wilfred van Rooijen, who will receive his Delft University of Technology PhD degree based on this research subject on Tuesday, 12 December.

Wilfred van Rooijen's research, conducted at the Reactor Institute Delft, focused on the nuclear fuel cycle and safety features of a Gas-cooled Fast Reactor (GFR), one of the so-called 'fourth generation' nuclear reactor designs. These designs have a sustainable character: they are economical in their use of nuclear fuel and are capable of rendering a great deal of their own nuclear waste harmless. The ability to actually build such reactors is however still in the very distant future.

The fourth generation GFR uses helium as a coolant at high temperatures. GFR's ultimate objective is to create a closed nuclear fuel cycle, in which only natural uranium is used as a raw material and in which the resulting waste consists of only nuclear fission products. Uranium and heavier isotopes, such as plutonium and americum, are recycled in the reactor and ultimately burned up (fissioned). In the reactors in use today, these heavy isotopes determine the long-term radioactivity of the nuclear waste. A closed nuclear fuel cycle therefore allows for maximum use of the raw materials, while at the same time substantially reducing the life-span of the waste.

This PhD research showed that it is possible to obtain a closed nuclear fuel cycle with a GFR. It also revealed that the GFR could use the waste materials of other light water reactors (LWR). The Gas-cooled Fast Reactor can therefore serve as an 'incinerator' of nuclear waste.

To increase the GFR's safety, special elements have been designed to automatically shut down the reactor during incidents. Van Rooijen's research has shown that with these elements the reactor is capable of withstanding incidents without damage to the nuclear fuel.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>