Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Intense Laser Blast Creates True 'Black Metal'

23.11.2006
"Black gold" is not just an expression anymore. Scientists at the University of Rochester have created a way to change the properties of almost any metal to render it, literally, black.

The process, using an incredibly intense burst of laser light, holds the promise of making everything from fuel cells to a space telescope's detectors more efficient—not to mention turning your car into the blackest black around.

"We've been surprised by the number of possible applications for this," says Chunlei Guo, assistant professor of optics at the University of Rochester. "We wanted to see what would happen to a metal's properties under different laser conditions and we stumbled on this way to completely alter the reflective properties of metals."

The key to creating black metal is an ultra-brief, ultra-intense beam of light called a femtosecond laser pulse. The laser burst lasts only a few quadrillionths of a second. To get a grasp of that kind of speed—a femtosecond is to a second what a second is to about 32 million years.

During its brief burst, Guo's laser unleashes as much power as the entire grid of North America onto a spot the size of a needle point. That intense blast forces the surface of the metal to form and nanostructures—pits, globules, and strands that both dramatically increase the area of the surface and capture radiation. Some larger structures also form in subsequent blasts.

Guo's research team has tested the absorption capabilities for the black metal and confirmed that it can absorb virtually all the light that fall on it, making it pitch black.

Other similar attempts have turned silicon black, but those use a gas to produce chemically etched microstructures. Regular silicon already absorbs most of the visible light that falls on it, so the etching technique only offers about a 30 percent improvement, whereas regular metals absorb only a few percent of visible light before Guo hits them with the laser.

The huge increase in light absorption enabled by Guo's femtosecond laser processing means nearly any metal becomes extremely useful anytime radiation gathering is needed. For instance, detectors of all kinds, from space probes to light meters, could capture far more data than an ordinary metal-based detector could.

And turning a metal black without paint, scoring, or burning could easily lead to everyday uses such as replacing black paint on automobile trim, or presenting your spouse with a jet-black engagement ring.

Guo is also quick to point out that the nanostructures' remarkable increase in a metal's surface area is a perfect way to catalyze chemical reactions. Along with one of his research group members, postdoctoral student Anatoliy Vorobyev, he hopes to learn how the metal can help derive more energy from fuel cell reactions.

The new process has worked on every metal Guo has tried, and since it's a property of the metal itself, there's no worry of the black wearing off.

Currently, the process is slow. To alter a strip of metal the size of your little finger easily takes 30 minutes or more, but Guo is looking at how different burst lengths, different wavelengths, and different intensities affect metal's properties. Fortunately, despite the incredible intensity involved, the femtosecond laser can be powered by a simple wall outlet, meaning that when the process is refined, implementing it should be relatively simple.

Despite the "wall outlet" ease of the use and the stay-cool metal, don't expect to see home-blackening kits anytime soon. "If you got your hand in the way of the focused laser beam, even though it's only firing for a few femtoseconds, it would drill a hole through your skin," says Guo. "I wouldn't recommend trying that."

For recent publications of this research, please visit Guo's research group website at http://www.optics.rochester.edu/workgroups/guo/index.htm

Jonathan Sherwood | EurekAlert!
Further information:
http://www.optics.rochester.edu/workgroups/guo/index.htm

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>