Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tabletop experiment yields bubbly surprise

09.10.2006
Physicists study equations governing texture of everyday life

University of Chicago physicists have discovered a new class of behavior in air bubbles rising from an underwater nozzle. In this surprising behavior, the bubbles tear apart in sharp jerks instead of pinching off at a point, the research team will report in the Oct. 6 issue of the journal Physical Review Letters.

The research is helping scientists understand the mathematical explosions they encounter in the equations that govern the physics of fluids. "These are the equations of our lives," said Wendy Zhang, Assistant Professor in Physics at the University of Chicago. They govern everything from the bubbles of carbonated beverages to the venting of gas from deep oceanic fissures. They even apply to such large-scale processes such as exploding stars.

"One of the things that's nice about this field of research is that it's around you all the time," said Sidney Nagel, the Stein-Freiler Distinguished Service Professor in Physics at the University of Chicago. "It's on your tabletop and you've seen it who knows how many times. But by studying this so incredibly carefully, you get insights about things that happen on the celestial scale."

Chicago graduate student Nathan Keim and his co-authors-Zhang, Nagel, and Peder Moller, now a Ph.D. student at Ecole Normale Supérieure-documented their discovery using high-speed digital photography. Keim's experiment built on previous work that Zhang, Nagel and others published in Science in 2003. Until then, scientists believed that all fluids broke apart in much the same way. They believed that the cross-section of the pinching neck of any drop or bubble would become circular until it broke, regardless of its initial conditions.

Normally when physicists work a problem, they want to know the initial conditions involved. "That determines the outcome of what happens," Keim said. But in all of the Chicago group's previous experiments on fluid breakup, "the initial conditions didn't matter. The system forgot them," Keim said.

The 2003 Science article described something different in experiments on water drops breaking up in a highly viscous oil. The article showed how the shape of the shrinking neck in a long, thin thread the drops formed depended on the initial shape of the nozzle. Drops from big nozzles detached differently than drops from small nozzles.

What Keim saw in the images from the latest experiment, taken at 130,000 frames per second, looked more like thin sheets of air tearing. "It would be almost like plastic or paper, something that you can tear. When you pulled it apart, it wouldn't snap all at once. It would tear across its breadth," Keim said.

The tearing apparently occurs when a small imperfection on the nozzle imprints itself on the shape of the bubbles, Zhang said. In their other experiments, "that wasn't an issue at all because the bubble managed to just straighten itself out. The problem with this one is that it doesn't straighten itself out," she said.

The tilt of the nozzle also contributes to the phenomenon. The physicists observed that even a tilt of only a tenth of a degree affected the shape of the air. "We had no idea that air bubbles were sensitive to such slight tilt," Keim said. "If you were hanging a picture, 0.1 degrees off would be a great job."

Keim and his co-authors related the bubble phenomenon to a 2004 report in the Astrophysical Journal by another team of University of Chicago scientists proposing that detonations in exploding stars my arise asymmetrically. A singularity-the failure of equations that describe the behavior of fluid motion-connects the physics of stars exploding in deep space with breaking bubbles in a water tank on Earth.

In an exploding star, "you have a singularity that is off-center, that has asymmetry," Keim said. "It happens in a place where you have denser material on one side and lighter material on the other. And so this singularity has some direction to it, some asymmetry, much in the way that ours does."

Nagel said a key to the project was having Keim, an experimentalist, working daily with Zhang, a theorist, in developing the research in ways that neither could do alone. Said Keim, "It's been great having Wendy often just asking the right question at the right time, prompting me to do an experiment that otherwise I wouldn't have thought was interesting."

In their collaborations, the Chicago physicists aim to get gain a better understanding of the equations that govern fluids on Earth, gases in the heavens, and perhaps even the motion of protons and neutrons inside an atom, Nagel said.

"They're ill-behaved, and yet it's theses kinds of equations that govern the texture and form of our lives," he said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>