Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar pinwheels at our Galaxy's core

22.08.2006
Mystery Quintuplets' identity crisis resolved

Astronomers have finally learned the identity of a mysterious "Quintuplet Cluster" of stars situated near the supermassive black hole at our galaxy's core: At least two of the objects are not individual stars, but binary pairs that live fast and die young, forming fiery pinwheels as they spin around one another.

A multinational team led by Peter Tuthill of the University of Sydney in Australia, used the extraordinary resolution of the 10-meter telescope at the W.M. Keck Observatory in Hawaii, to determine the nature of the enigmatic objects. They report their findings in the Aug. 18 issue of the journal Science.

Until these observations, researchers had not known whether the extremely red "cocoon" quintuplets were aging stars surrounded by shells of dust, or young stars accompanied by disks of bright gas. Neither hypothesis was convincing, and neither fully explained the enormous light output: Each quintuplet emits 10,000 to 100,000 times as much radiation as the Sun.

The new findings indicate the quintuplets are members of a rare class called "Wolf-Rayet colliding-wind binaries" -- massive, fast-burning star pairs that live only a few million years before exploding in terminal supernovae. By contrast, the Sun is about 5 billion years old and only middle-aged. The pinwheel effect is caused by the way each star's dusty mantle is affected by that of its partner, producing spiral plumes.

"The discovery of spiral plumes, the size of our entire solar system, has solved the enigma of the bright red stars in the Quintuplet Cluster located right next door (within 100 light-years) to the center of our Galaxy," says study co-author Andrea Ghez of the University of California, Los Angeles. "Within the astronomy world, there has been a surge of interest in these stars. Wolf-Rayets are very massive stars at the very end-point of their normal lives: they are the last stable phase before a supernova explosion. Massive binary systems such as these pinwheel stars will, in fact, explode three times: two explosions as each of the pair separately undergoes a core-collapse supernova, then a third explosion as the two fall into each other in an inspiral-merger event -- possibly in the quite-distant future."

Curt Suplee | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>