Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar pinwheels at our Galaxy's core

22.08.2006
Mystery Quintuplets' identity crisis resolved

Astronomers have finally learned the identity of a mysterious "Quintuplet Cluster" of stars situated near the supermassive black hole at our galaxy's core: At least two of the objects are not individual stars, but binary pairs that live fast and die young, forming fiery pinwheels as they spin around one another.

A multinational team led by Peter Tuthill of the University of Sydney in Australia, used the extraordinary resolution of the 10-meter telescope at the W.M. Keck Observatory in Hawaii, to determine the nature of the enigmatic objects. They report their findings in the Aug. 18 issue of the journal Science.

Until these observations, researchers had not known whether the extremely red "cocoon" quintuplets were aging stars surrounded by shells of dust, or young stars accompanied by disks of bright gas. Neither hypothesis was convincing, and neither fully explained the enormous light output: Each quintuplet emits 10,000 to 100,000 times as much radiation as the Sun.

The new findings indicate the quintuplets are members of a rare class called "Wolf-Rayet colliding-wind binaries" -- massive, fast-burning star pairs that live only a few million years before exploding in terminal supernovae. By contrast, the Sun is about 5 billion years old and only middle-aged. The pinwheel effect is caused by the way each star's dusty mantle is affected by that of its partner, producing spiral plumes.

"The discovery of spiral plumes, the size of our entire solar system, has solved the enigma of the bright red stars in the Quintuplet Cluster located right next door (within 100 light-years) to the center of our Galaxy," says study co-author Andrea Ghez of the University of California, Los Angeles. "Within the astronomy world, there has been a surge of interest in these stars. Wolf-Rayets are very massive stars at the very end-point of their normal lives: they are the last stable phase before a supernova explosion. Massive binary systems such as these pinwheel stars will, in fact, explode three times: two explosions as each of the pair separately undergoes a core-collapse supernova, then a third explosion as the two fall into each other in an inspiral-merger event -- possibly in the quite-distant future."

Curt Suplee | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>