Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics and biology team up to tackle protein folding debate

05.04.2006


A team of researchers from EPFL, (Ecole Polytechnique Fédérale de Lausanne), the University of Lausanne, Northwestern University and Tel Aviv University bring biology and statistical physics together to answer the question of how molecular chaperones fold, unfold and pull proteins around in the cell. Their results appear the week of April 3 in the advance online edition of the Proceedings of the National Academy of Sciences.



A series of discussions in a campus café in Lausanne has blossomed into an extraordinary collaboration between EPFL physics professor Paolo De Los Rios and University of Lausanne biology professor Pierre Goloubinoff. Using the principles of statistical physics, they have identified a simple, single mechanism that explains the mechanical role of molecular chaperones in protein folding and translocation, settling at the same time a long-standing controversy over this process.

Molecular chaperones are specialized proteins that help other proteins find their proper conformations and reach their proper places in the cell. For more than two decades, biologists and biochemists have debated how one of these chaperones, Hsp70, manages the mechanical job of unfolding protein aggregates and pulling proteins into the various compartments of the cell. Is it by a “Power Stroke”, in which the chaperone would use leverage and produce a mechanical force that pulls the protein, or a “Brownian Ratchet”, in which the presence of the chaperone and the thermal fluctuations of the protein itself combine to pull the protein? There is no overwhelming evidence in favor of one explanation over the other. More importantly, neither theory explains the full range of Hsp70’s activity.


Using their prior results from biochemistry, De Los Rios and Goloubinoff turned to molecular geometry, statistical physics and the laws of thermodynamics in an attempt to solve the problem. The result, which they have dubbed “Entropic Pulling”, is a modified form of the Brownian Ratchet mechanism. Molecular systems, they explain, must obey the laws of physics and strive for equilibrium. In the process, they increase their entropy. When the Hsp70 molecule, attached to a protein, hits a membrane or an aggregate, a tiny force due to entropy pushes it away again, dragging the protein strand along with it. The collaborators demonstrated that this entropic effect, combined with the protein’s own thermal fluctuations, can exert enough force to pull a protein through the narrow pore of a mitochondrial membrane or disentangle an aggregate in the cell.

“Our explanation is so simple,” De Los Rios says, “that it almost seems disappointing. We have shown that all the functions of Hsp70 in the cell can be explained by one simple mechanism.”

Many diseases – among them mad cow, Parkinson’s and Alzheimer’s diseases -- are caused by misfolded proteins or aggregates. Goloubinoff emphasizes that understanding how chaperones such as Hsp70 function is important groundwork that must be laid before we can hope to develop strategies to treat these kinds of protein-misfolding pathologies.

Simple, elegant solutions often belie the struggle that went into their creation. The collaborators invested much time, energy (and coffee!) becoming familiar with the culture and language of each other’s discipline. Now the effort has borne fruit in an excellent demonstration of the potential of interdisciplinary research in physics and biology.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>