Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kiwi astronomers help find icy ’Super Earth’ – Life in space discovery a step closer

16.03.2006


By designing a variant of an astronomical technique proposed by Einstein, researchers from The University of Auckland and Massey University, together with astronomers from Auckland’s Stardome Observatory, have found evidence for a new icy "Super Earth".



While over 100 gaseous Jupiter-sized planets have been discovered in the last decade, and four medium Neptune-sized planets, until now there have been no discoveries of Earth-sized terrestrial planets that could support life.

Dr Philip Yock from The University of Auckland’s Faculty of Science says the latest find brings the goal of locating an Earth-like planet in the Milky Way a step closer.


The astronomers used the gravitational fields of stars as huge, naturally occurring lenses, as originally proposed by Einstein. This technique is called "gravitational microlensing".

"The new planet is Neptune-sized and icy, but unlikely to be covered with a layer of gas like Neptune. Instead it may be more akin to a large, chilly version of our own Earth. The researchers were able to deduce this because they showed that the new planet has no Jupiter-like companion.

"Ten years ago, such a finding would have been unthinkable. At the time only a handful of Jupiter-like planets had been found, and medium Neptune-sized planets weren’t even on the horizon. Competition between the various groups involved in the hunt for an Earth-twin spurs development onwards."

In 2002, Dr Yock of The University of Auckland, Dr Ian Bond of Massey University and Dr Nicholas Rattenbury of Manchester University published a variant of Einstein’s microlensing method by which they thought earth-sized planets might be found. At the time, all were working at The University of Auckland.

Their method focused on lenses that produce very high magnification, in the order of 100 times or more. Not surprisingly, these lenses have greater sensitivity to small planets like Earth. Bond, Rattenbury and Yock were able to demonstrate that there should be enough of these lenses to make practicable measurements. The demonstration used data from the Japan/NZ microlensing group called MOA, based at Mt John in New Zealand.

Bond, Rattenbury and Yock are co-authors on a new paper reporting the discovery of this planet - which utilised their strategy. This has been submitted to The Astrophysical Journal for publication. Co-authors include Dr Christine Botzler, Dr Grant Christie, Ms Jennie McCormick and Mr Stephen Swaving of Auckland who supplied data and assisted with its interpretation.

Several pioneers of gravitational microlensing are also co-authors, including Dr Andrzej Udalski of Poland, and Drs David Bennett, Andrew Gould and Bohdan Paczynski of the US. They are members of Polish-based and US-based microlensing groups known as OGLE and MicroFUN. The gravitational lens that was used to locate the new planet, named OGLE-2005-BLG-169Lb, was found by the OGLE group.

Bill Williams | EurekAlert!
Further information:
http://www.auckland.ac.nz

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>