Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kiwi astronomers help find icy ’Super Earth’ – Life in space discovery a step closer

16.03.2006


By designing a variant of an astronomical technique proposed by Einstein, researchers from The University of Auckland and Massey University, together with astronomers from Auckland’s Stardome Observatory, have found evidence for a new icy "Super Earth".



While over 100 gaseous Jupiter-sized planets have been discovered in the last decade, and four medium Neptune-sized planets, until now there have been no discoveries of Earth-sized terrestrial planets that could support life.

Dr Philip Yock from The University of Auckland’s Faculty of Science says the latest find brings the goal of locating an Earth-like planet in the Milky Way a step closer.


The astronomers used the gravitational fields of stars as huge, naturally occurring lenses, as originally proposed by Einstein. This technique is called "gravitational microlensing".

"The new planet is Neptune-sized and icy, but unlikely to be covered with a layer of gas like Neptune. Instead it may be more akin to a large, chilly version of our own Earth. The researchers were able to deduce this because they showed that the new planet has no Jupiter-like companion.

"Ten years ago, such a finding would have been unthinkable. At the time only a handful of Jupiter-like planets had been found, and medium Neptune-sized planets weren’t even on the horizon. Competition between the various groups involved in the hunt for an Earth-twin spurs development onwards."

In 2002, Dr Yock of The University of Auckland, Dr Ian Bond of Massey University and Dr Nicholas Rattenbury of Manchester University published a variant of Einstein’s microlensing method by which they thought earth-sized planets might be found. At the time, all were working at The University of Auckland.

Their method focused on lenses that produce very high magnification, in the order of 100 times or more. Not surprisingly, these lenses have greater sensitivity to small planets like Earth. Bond, Rattenbury and Yock were able to demonstrate that there should be enough of these lenses to make practicable measurements. The demonstration used data from the Japan/NZ microlensing group called MOA, based at Mt John in New Zealand.

Bond, Rattenbury and Yock are co-authors on a new paper reporting the discovery of this planet - which utilised their strategy. This has been submitted to The Astrophysical Journal for publication. Co-authors include Dr Christine Botzler, Dr Grant Christie, Ms Jennie McCormick and Mr Stephen Swaving of Auckland who supplied data and assisted with its interpretation.

Several pioneers of gravitational microlensing are also co-authors, including Dr Andrzej Udalski of Poland, and Drs David Bennett, Andrew Gould and Bohdan Paczynski of the US. They are members of Polish-based and US-based microlensing groups known as OGLE and MicroFUN. The gravitational lens that was used to locate the new planet, named OGLE-2005-BLG-169Lb, was found by the OGLE group.

Bill Williams | EurekAlert!
Further information:
http://www.auckland.ac.nz

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>