Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way’s fastest pulsar is on its way out of the galaxy

17.02.2006


The Milky Way’s fastest observed pulsar is speeding out of the galaxy at more than 670 miles a second, propelled largely by a kick it received at its birth 2.5 million years ago.



Using the Very Long Baseline Array (VLBA), 10 radio telescopes spanning 5,000 miles from Hawaii to the U.S. Virgin Islands, James Cordes, professor of astronomy at Cornell University, his former student Shami Chatterjee, now of the Harvard-Smithsonian Center for Astrophysics, and colleagues studied the pulsar (a fast-spinning neutron star) B1508+55, about 7,700 light years from Earth. With the ultra-sharp radio vision of the continentwide VLBA, they precisely measured both the distance and the speed of the pulsar.

Professor of astronomy Jim Cordes stands beside an image of a galaxy similar to the Milky Way in Cornell’s Space Sciences Building. Copyright © Cornell University
The team then plotted the star’s motion backward to a birthplace among groups of giant stars in the constellation Cygnus, which contains stars so massive they inevitably explode as supernovae.



Commenting on the research, which was published last fall in Astrophysical Journal Letters, Chatterjee said, "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding. This discovery is very difficult for the latest models to explain." Chatterjee is also a Jansky fellow at the National Radio Astronomy Observatory (NRAO).

The VLBA measurements show the pulsar moving at nearly 1,100 kilometers (more than 670 miles) per second. At this speed, it could travel from London to New York in five seconds.

To measure the pulsar’s distance, the astronomers had to detect a very slight wobble in its position caused by the Earth’s motion around the sun. This enabled them to calculate the pulsar’s speed by measuring its motion across the sky.

"The motion we measured with the VLBA was about equal to watching a home run ball in Boston’s Fenway Park from a seat on the moon," Chatterjee said. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions."

"The physics is not well understood because the high pulsar speed is the result of the implosion of the core of a star that took only a few seconds about 2.5 million years ago," said Cordes. "The reason this is so different is the precision of it. In astronomy one of the big problems is getting the distance scale. In the past we’ve identified objects whose velocity we’ve estimated, but what makes this special is there’s no uncertainty in the distance. It’s ironclad. There’s no wiggle room. It gets rid of any question."

The star’s presumed birthplace lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the pulsar now is headed away from the Milky Way’s plane with enough speed to leave the galaxy. Since the supernova explosion, the pulsar has moved across about a third of the night sky as seen from Earth.

"We’ve thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said, noting that other processes could be at work as well.

The observations were part of a larger project to use the VLBA to measure the distances and motions of pulsars. "This is the first result of this long-term project, and it’s pretty exciting to have something so spectacular come this early," said NRAO’s Walter Brisken, a co-author.

Each of the radio telescopes in the VLBA, which is funded by the National Science Foundation (NSF), has a dish 25 meters (82 feet) in diameter and weighs 240 tons. The VLBA provides astronomers with the sharpest vision of any telescope on Earth or in space.

Chatterjee is lead author of the Astrophysical Journal Letters article. Other co-authors include Joseph Lazio of the Naval Research Laboratory, Miller Goss and Edward Fomalont of NRAO, Stephen Thorsett of the University of California-Santa Cruz, and Andrew Lyne, Wouter Vlemmings and Michael Kramer of Jodrell Bank Observatory. The NRAO is a facility of NSF, operated under cooperative agreement by Associated Universities Inc.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>