Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way’s fastest pulsar is on its way out of the galaxy

17.02.2006


The Milky Way’s fastest observed pulsar is speeding out of the galaxy at more than 670 miles a second, propelled largely by a kick it received at its birth 2.5 million years ago.



Using the Very Long Baseline Array (VLBA), 10 radio telescopes spanning 5,000 miles from Hawaii to the U.S. Virgin Islands, James Cordes, professor of astronomy at Cornell University, his former student Shami Chatterjee, now of the Harvard-Smithsonian Center for Astrophysics, and colleagues studied the pulsar (a fast-spinning neutron star) B1508+55, about 7,700 light years from Earth. With the ultra-sharp radio vision of the continentwide VLBA, they precisely measured both the distance and the speed of the pulsar.

Professor of astronomy Jim Cordes stands beside an image of a galaxy similar to the Milky Way in Cornell’s Space Sciences Building. Copyright © Cornell University
The team then plotted the star’s motion backward to a birthplace among groups of giant stars in the constellation Cygnus, which contains stars so massive they inevitably explode as supernovae.



Commenting on the research, which was published last fall in Astrophysical Journal Letters, Chatterjee said, "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding. This discovery is very difficult for the latest models to explain." Chatterjee is also a Jansky fellow at the National Radio Astronomy Observatory (NRAO).

The VLBA measurements show the pulsar moving at nearly 1,100 kilometers (more than 670 miles) per second. At this speed, it could travel from London to New York in five seconds.

To measure the pulsar’s distance, the astronomers had to detect a very slight wobble in its position caused by the Earth’s motion around the sun. This enabled them to calculate the pulsar’s speed by measuring its motion across the sky.

"The motion we measured with the VLBA was about equal to watching a home run ball in Boston’s Fenway Park from a seat on the moon," Chatterjee said. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions."

"The physics is not well understood because the high pulsar speed is the result of the implosion of the core of a star that took only a few seconds about 2.5 million years ago," said Cordes. "The reason this is so different is the precision of it. In astronomy one of the big problems is getting the distance scale. In the past we’ve identified objects whose velocity we’ve estimated, but what makes this special is there’s no uncertainty in the distance. It’s ironclad. There’s no wiggle room. It gets rid of any question."

The star’s presumed birthplace lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the pulsar now is headed away from the Milky Way’s plane with enough speed to leave the galaxy. Since the supernova explosion, the pulsar has moved across about a third of the night sky as seen from Earth.

"We’ve thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said, noting that other processes could be at work as well.

The observations were part of a larger project to use the VLBA to measure the distances and motions of pulsars. "This is the first result of this long-term project, and it’s pretty exciting to have something so spectacular come this early," said NRAO’s Walter Brisken, a co-author.

Each of the radio telescopes in the VLBA, which is funded by the National Science Foundation (NSF), has a dish 25 meters (82 feet) in diameter and weighs 240 tons. The VLBA provides astronomers with the sharpest vision of any telescope on Earth or in space.

Chatterjee is lead author of the Astrophysical Journal Letters article. Other co-authors include Joseph Lazio of the Naval Research Laboratory, Miller Goss and Edward Fomalont of NRAO, Stephen Thorsett of the University of California-Santa Cruz, and Andrew Lyne, Wouter Vlemmings and Michael Kramer of Jodrell Bank Observatory. The NRAO is a facility of NSF, operated under cooperative agreement by Associated Universities Inc.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>