Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way’s fastest pulsar is on its way out of the galaxy

17.02.2006


The Milky Way’s fastest observed pulsar is speeding out of the galaxy at more than 670 miles a second, propelled largely by a kick it received at its birth 2.5 million years ago.



Using the Very Long Baseline Array (VLBA), 10 radio telescopes spanning 5,000 miles from Hawaii to the U.S. Virgin Islands, James Cordes, professor of astronomy at Cornell University, his former student Shami Chatterjee, now of the Harvard-Smithsonian Center for Astrophysics, and colleagues studied the pulsar (a fast-spinning neutron star) B1508+55, about 7,700 light years from Earth. With the ultra-sharp radio vision of the continentwide VLBA, they precisely measured both the distance and the speed of the pulsar.

Professor of astronomy Jim Cordes stands beside an image of a galaxy similar to the Milky Way in Cornell’s Space Sciences Building. Copyright © Cornell University
The team then plotted the star’s motion backward to a birthplace among groups of giant stars in the constellation Cygnus, which contains stars so massive they inevitably explode as supernovae.



Commenting on the research, which was published last fall in Astrophysical Journal Letters, Chatterjee said, "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding. This discovery is very difficult for the latest models to explain." Chatterjee is also a Jansky fellow at the National Radio Astronomy Observatory (NRAO).

The VLBA measurements show the pulsar moving at nearly 1,100 kilometers (more than 670 miles) per second. At this speed, it could travel from London to New York in five seconds.

To measure the pulsar’s distance, the astronomers had to detect a very slight wobble in its position caused by the Earth’s motion around the sun. This enabled them to calculate the pulsar’s speed by measuring its motion across the sky.

"The motion we measured with the VLBA was about equal to watching a home run ball in Boston’s Fenway Park from a seat on the moon," Chatterjee said. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions."

"The physics is not well understood because the high pulsar speed is the result of the implosion of the core of a star that took only a few seconds about 2.5 million years ago," said Cordes. "The reason this is so different is the precision of it. In astronomy one of the big problems is getting the distance scale. In the past we’ve identified objects whose velocity we’ve estimated, but what makes this special is there’s no uncertainty in the distance. It’s ironclad. There’s no wiggle room. It gets rid of any question."

The star’s presumed birthplace lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the pulsar now is headed away from the Milky Way’s plane with enough speed to leave the galaxy. Since the supernova explosion, the pulsar has moved across about a third of the night sky as seen from Earth.

"We’ve thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said, noting that other processes could be at work as well.

The observations were part of a larger project to use the VLBA to measure the distances and motions of pulsars. "This is the first result of this long-term project, and it’s pretty exciting to have something so spectacular come this early," said NRAO’s Walter Brisken, a co-author.

Each of the radio telescopes in the VLBA, which is funded by the National Science Foundation (NSF), has a dish 25 meters (82 feet) in diameter and weighs 240 tons. The VLBA provides astronomers with the sharpest vision of any telescope on Earth or in space.

Chatterjee is lead author of the Astrophysical Journal Letters article. Other co-authors include Joseph Lazio of the Naval Research Laboratory, Miller Goss and Edward Fomalont of NRAO, Stephen Thorsett of the University of California-Santa Cruz, and Andrew Lyne, Wouter Vlemmings and Michael Kramer of Jodrell Bank Observatory. The NRAO is a facility of NSF, operated under cooperative agreement by Associated Universities Inc.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>