Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beam therapy in 3D format

11.01.2006


Algorithms and programs being developed by scientists from the Moscow Physics Engineering Institute and the Keldysh Institute of Applied Mathematics RAS with the support of the International Science and Technology Centre will help oncologists to accurately and rapidly calculate an optimal dose of radiation. Then, they will be able to determine the direction and intensity of radioactive flows so as to have maximum harmful effect on the tumour with minimum irradiation of healthy tissue, and all within a few minutes.

Unfortunately humans are not yet aware of totally safe means to fight malignant tumours. In the final analysis all resources that kill a tumour cause varying degrees of harm to healthy cells; they destroy the tissues of the heart, kidneys, testicles and so on. Sometimes the most effective kind of therapy and, strange though it may seem, the least harmful to the patient, is the so-called optimal beam therapy, in the course of which the dose required to treat the tumour is received by the tumour itself, while the patient’s remaining organs and tissues receive a minimum dose load.

Naturally the developers of the beam therapy apparatus are doing their utmost to optimize where possible the dose distribution and, to do this, to increase the accuracy of its calculation. In an ideal situation a beam is required which would hit the tumour directly and which would rapidly weaken beyond its outer limits. But is it possible to calculate in advance the parameters of the beam in such a way so as to pre-plan the radiation dose throughout its path in the patient’s organism? Our body after all is not an ideal homogeneous environment; knowing the laws of interaction of it with one or another form of radiation, it would be easy to calculate the dose in each point of the organism during the course of the irradiation. Skin, bone, muscle: as such all tissue types interact with radiation in their own way, not to mention the fact that the human body surface itself is nothing if not irregular.



It is clear that only a computer is able to resolve such a non-uniform task as the planning of remote beam therapy. In principle methods already exist in other applied fields to calculate the spread of radiation effects and the algorithms and programs required to solve other tasks. Under their direct application to resolve tasks in radiation therapy planning, they ensure high precision but are so difficult to implement that it would take one PC not minutes but tens of hours to solve such a task. It is understood that such terms are unacceptable for the purposes of practical medicine.

So, what are the project authors proposing? The fact is that they have considerable and very successful experience behind them in solving similar problems for calculations related to nuclear reactors and the protection of nuclear installations. To reduce the calculation time with three-dimensional systems, they were able to divide the total time and, accordingly, the calculation time between several computers, having taught the computers to exchange information between themselves. In other words they developed programs to transfer to multiprocessor technologies and to parallelize calculations.

It is this experience that the authors propose to use in order to facilitate the calculation of parameters of radiation beams that are required for optimal irradiation of a specific point in the patient’s body.

“To compute the radiation dose a patient will receive in the course of a procedure, in each point in their body, we have developed a principally new computational algorithm, based on a combination of Monte-Carlo methods and a discrete ordinates method,” explains Project Manager Alexander Kryanev. “This set up differs from all those before, not only in a reduction in the time required to model the trajectory of radiating particles, but also in that it uses a new class for estimating the radiation dose. The essence of the set up is fairly complicated, although the result is understood by all: it has been possible to reduce calculation time by orders of magnitude. And as the new algorithm, by way of its features, can almost completely parallelize calculations, all calculations of the doses in the radiation volume can be performed in just a few minutes.”

As a result the authors hope to develop a remote beam therapy complex to rapidly and accurately plan optimal irradiation on computers with parallel architecture. Then the authors intend to test their complex in a clinic of the Russian Federation Oncology Centre. In their turn oncologists and patients hope that the researchers will have the requisite conditions in place to create such a complex. There is no doubt that the scientists are equipped with the knowledge and experience required.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/beam-therapy

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>