Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beam therapy in 3D format

11.01.2006


Algorithms and programs being developed by scientists from the Moscow Physics Engineering Institute and the Keldysh Institute of Applied Mathematics RAS with the support of the International Science and Technology Centre will help oncologists to accurately and rapidly calculate an optimal dose of radiation. Then, they will be able to determine the direction and intensity of radioactive flows so as to have maximum harmful effect on the tumour with minimum irradiation of healthy tissue, and all within a few minutes.

Unfortunately humans are not yet aware of totally safe means to fight malignant tumours. In the final analysis all resources that kill a tumour cause varying degrees of harm to healthy cells; they destroy the tissues of the heart, kidneys, testicles and so on. Sometimes the most effective kind of therapy and, strange though it may seem, the least harmful to the patient, is the so-called optimal beam therapy, in the course of which the dose required to treat the tumour is received by the tumour itself, while the patient’s remaining organs and tissues receive a minimum dose load.

Naturally the developers of the beam therapy apparatus are doing their utmost to optimize where possible the dose distribution and, to do this, to increase the accuracy of its calculation. In an ideal situation a beam is required which would hit the tumour directly and which would rapidly weaken beyond its outer limits. But is it possible to calculate in advance the parameters of the beam in such a way so as to pre-plan the radiation dose throughout its path in the patient’s organism? Our body after all is not an ideal homogeneous environment; knowing the laws of interaction of it with one or another form of radiation, it would be easy to calculate the dose in each point of the organism during the course of the irradiation. Skin, bone, muscle: as such all tissue types interact with radiation in their own way, not to mention the fact that the human body surface itself is nothing if not irregular.



It is clear that only a computer is able to resolve such a non-uniform task as the planning of remote beam therapy. In principle methods already exist in other applied fields to calculate the spread of radiation effects and the algorithms and programs required to solve other tasks. Under their direct application to resolve tasks in radiation therapy planning, they ensure high precision but are so difficult to implement that it would take one PC not minutes but tens of hours to solve such a task. It is understood that such terms are unacceptable for the purposes of practical medicine.

So, what are the project authors proposing? The fact is that they have considerable and very successful experience behind them in solving similar problems for calculations related to nuclear reactors and the protection of nuclear installations. To reduce the calculation time with three-dimensional systems, they were able to divide the total time and, accordingly, the calculation time between several computers, having taught the computers to exchange information between themselves. In other words they developed programs to transfer to multiprocessor technologies and to parallelize calculations.

It is this experience that the authors propose to use in order to facilitate the calculation of parameters of radiation beams that are required for optimal irradiation of a specific point in the patient’s body.

“To compute the radiation dose a patient will receive in the course of a procedure, in each point in their body, we have developed a principally new computational algorithm, based on a combination of Monte-Carlo methods and a discrete ordinates method,” explains Project Manager Alexander Kryanev. “This set up differs from all those before, not only in a reduction in the time required to model the trajectory of radiating particles, but also in that it uses a new class for estimating the radiation dose. The essence of the set up is fairly complicated, although the result is understood by all: it has been possible to reduce calculation time by orders of magnitude. And as the new algorithm, by way of its features, can almost completely parallelize calculations, all calculations of the doses in the radiation volume can be performed in just a few minutes.”

As a result the authors hope to develop a remote beam therapy complex to rapidly and accurately plan optimal irradiation on computers with parallel architecture. Then the authors intend to test their complex in a clinic of the Russian Federation Oncology Centre. In their turn oncologists and patients hope that the researchers will have the requisite conditions in place to create such a complex. There is no doubt that the scientists are equipped with the knowledge and experience required.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/beam-therapy

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>