Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Torch-sized devices will detect disease and weapons


Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications from disease diagnosis to weapons detection.

The new devices, which would be the size of a normal torch, will detect radiation in the THz (terahertz) region of the electromagnetic spectrum. It is hoped they could be used in applications such as screening for explosive chemicals or drugs to help with security and crime prevention, to look for pollution in the local environment, and by doctors to help diagnosis.

The collaborative project, funded by grants from the Engineering and Physical Sciences Research Council totalling £2 million, is being conducted by a team of researchers in the Department of Electronic Systems Engineering in collaboration with academics from UCL (University College London), the Universities of Bath and Leeds, and the Centre for Integrated Photonics Ltd in Ipswich.

Professor Henning, who is leading the team, explained: ’THz radiation falls between the infrared and microwave regions of the electromagnetic spectrum and can be imagined as either very high frequency radio waves, or as light which is invisible to the naked eye.

’For a long time it has been quite difficult to generate and detect THz, but, in recent years people have used large, powerful lasers to create pulses of THz radiation. This has proved very useful in medical applications to build up pictures of body tissue, rather like an x-ray, which can show up abnormalities. However, such devices require a large power supply and are usually bulky. With a small, low power device, which can run off batteries, the possibilities for practical applications open up enormously.’

Other interesting areas for application include using THz in fossil imaging, analysing chemicals in gases, and as part of astronomical observations.

The Portable Terehertz Systems Based on Advanced InP Technology (PORTRAIT) project is due to be completed in 2008.

Kate Clayton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>