Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millennium Simulation - the largest ever model of the Universe

02.06.2005


The Virgo consortium, an international group of astrophysicists from the UK, Germany, Japan, Canada and the USA has today (June 2nd) released first results from the largest and most realistic simulation ever of the growth of cosmic structure and the formation of galaxies and quasars. In a paper published in Nature, the Virgo Consortium shows how comparing such simulated data to large observational surveys can reveal the physical processes underlying the build-up of real galaxies and black holes.



The "Millennium Simulation" employed more than 10 billion particles of matter to trace the evolution of the matter distribution in a cubic region of the Universe over 2 billion light-years on a side. It kept the principal supercomputer at the Max Planck Society’s Supercomputing Centre in Garching, Germany occupied for more than a month. By applying sophisticated modelling techniques to the 25 Terabytes (25 million Megabytes) of stored output, Virgo scientists are able to recreate evolutionary histories for the approximately 20 million galaxies which populate this enormous volume and for the supermassive black holes occasionally seen as quasars at their hearts.

Telescopes sensitive to microwaves have been able to image the Universe directly when it was only 400,000 years old. The only structure at that time was weak ripples in an otherwise uniform sea of matter and radiation. Gravitationally driven evolution later turned these ripples into the enormously rich structure we see today. It is this growth which the Millennium Simulation is designed to follow, with the twin goals of checking that this new paradigm for cosmic evolution is indeed consistent with what we see, and of exploring the complex physics which gave rise to galaxies and their central black holes.


Recent advances in cosmology demonstrate that about 70 percent of our Universe currently consists of Dark Energy, a mysterious force field which is causing it to expand ever more rapidly. About one quarter apparently consists of Cold Dark Matter, a new kind of elementary particle not yet directly detected on Earth. Only about 5 percent is made out of the ordinary atomic matter with which we are familiar, most of that consisting of hydrogen and helium. All these components are treated in the Millennium Simulation.

In their Nature article, the Virgo scientists use the Millennium Simulation to study the early growth of black holes. The Sloan Digital Sky Survey (SDSS) has discovered a number of very distant and very bright quasars which appear to host black holes at least a billion times more massive than the Sun at a time when the Universe was less than a tenth its present age.

"Many astronomers thought this impossible to reconcile with the gradual growth of structure predicted by the standard picture", says Dr Volker Springel (Max Planck Institute for Astrophysics, Garching) the leader of the Millennium project and the first author of the article, "Yet, when we tried out our galaxy and quasar formation modelling we found that a few massive black holes do form early enough to account for these very rare SDSS quasars. Their galaxy hosts first appear in the Millennium data when the Universe is only a few hundred million years old, and by the present day they have become the most massive galaxies at the centres of the biggest galaxy clusters."

For Prof Carlos Frenk (Institute for Computational Cosmology, University of Durham) the head of Virgo in the UK, the most interesting aspect of the preliminary results is the fact that the Millennium Simulation demonstrates for the first time that the characteristic patterns imprinted on the matter distribution at early epochs and visible directly in the microwave maps, should still be present and should be detectable in the observed distribution of galaxies. "If we can measure the baryon wiggles sufficiently well", says Prof Frenk, "then they will provide us with a standard measuring rod to characterise the geometry and expansion history of the universe and so to learn about the nature of the Dark Energy."

"These simulations produce staggering images and represent a significant milestone in our understanding of how the early Universe took shape." said PPARC’s Chief Executive, Prof Richard Wade. "The Millennium Simulation is a brilliant example of the interaction between theory and experiment in astronomy as the latest observations of astronomical objects can be used to test the predictions of theoretical models of the Universe’s history."

The most interesting and far-reaching applications of the Millennium Simulation are still to come according to Prof Simon White (Max Planck Institute for Astrophysics) who heads Virgo efforts in Germany. "New observational campaigns are providing us with information of unprecedented precision about the properties of galaxies, black holes and the large-scale structure of our Universe," he notes. "Our ability to predict the consequences of our theories must reach a matching level of precision if we are to use these surveys effectively to learn about the origin and nature of our world. The Millennium Simulation is a unique tool for this. Our biggest challenge now is to make its power available to astronomers everywhere so that they can insert their own galaxy and quasar formation modelling in order to interpret their own observational surveys."

The Virgo Consortium

The Virgo Consortium is an international grouping of scientists carrying out supercomputer simulations of the formation of galaxies, galaxy clusters, large-scale structure, and of the evolution of the intergalactic medium. Although most of the members are based in Britain and at the MPA in Germany, there are important nodes in Japan, Canada and the United States. The primary platforms used by the consortium are the IBM supercomputer at the Computing Centre of the Max Planck Society in Garching and the Sun Microsystems "Cosmology Machine’’ at the Institute for Computational Cosmology of Durham University.

Julia Maddock | EurekAlert!
Further information:
http://www.virgo.dur.ac.uk/
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>