Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists demonstrate quantum mechanical nature of heat flow

15.04.2005


One of the hallmarks of quantum mechanics -- the laws of physics that apply on very small scales -- is the wave nature exhibited by sub-atomic particles such as electrons. An electron presented with two paths to a destination will use its wave nature to traverse both paths and, depending on the parameters of the two paths, will constructively or destructively interfere with itself at its destination, leading to a high or low probability of it appearing there.



A classic demonstration of this is the Aharonov-Bohm effect where electrons are sent along two paths that may be altered by the application of an external magnetic field. By tuning the magnetic field, the constructive or destructive interference of the electrons is manifested as an increase or decrease in the conduction of electric current. Now physicists at Northwestern University show that, using the fact that electrons carry heat as well as charge, the conduction of heat may be similarly tuned. Their findings will be published April 22 by Physical Review Letters, the journal of the American Physical Society.

Venkat Chandrasekhar, professor of physics in Northwestern’s Weinberg College of Arts and Sciences, and his graduate student Zhigang Jiang showed that a magnetic field can be used to increase or decrease the flow of heat through an "Andreev interferometer," a nanoscale device with one normal metal path and one superconducting path. Though the quantum interference of electrons in this device is responsible for these changes in heat flow, the flow of charge through the interferometer is zero. The researchers recently observed this effect experimentally.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>