Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese used diamonds to polish sapphire-rich stone in 2500 BC

14.02.2005


Find provides evidence of earliest known use of diamond and sapphire by prehistoric people

Researchers have uncovered strong evidence that the ancient Chinese used diamonds to grind and polish ceremonial stone burial axes as long as 6,000 years ago -– and incredibly, did so with a level of skill difficult to achieve even with modern polishing techniques. The finding, reported in the February issue of the journal Archaeometry, places this earliest known use of diamond worldwide thousands of years earlier than the gem is known to have been used elsewhere.

The work also represents the only known prehistoric use of sapphire: The stone worked into polished axes by China’s Liangzhu and Sanxingcun cultures around 4000 to 2500 BC has as its most abundant element the mineral corundum, known as ruby in its red form and sapphire in all other colors. Most other known prehistoric artifacts were fashioned from rocks and minerals no harder than quartz. "The physics of polishing is poorly understood; it’s really more an art than a science," says author Peter J. Lu, a graduate student in physics at Harvard University’s Graduate School of Arts and Sciences. "Still, it’s absolutely remarkable that with the best polishing technologies available today, we couldn’t achieve a surface as flat and smooth as was produced 5,000 years ago."



Lu’s work may eventually yield new insights into the origins of ancient China’s trademark Neolithic artifacts, vast quantities of finely polished jade objects. Lu began the research in 1999, as a Princeton University undergraduate. He studied four ceremonial axes, ranging in size from 13 to 22 centimeters, found at the tombs of wealthy individuals. Three of these axes, dating to the Sanxingcun culture of 4000 to 3800 BC and the later Liangzhu culture, came from the Nanjing Museum in China; the fourth, discovered at a Liangzhu culture site at Zhejiang Yuhang Wujiabu in 1993, dates roughly to 2500 BC. "What’s most amazing about these mottled brown and grey stones is that they have been polished to a mirror-like luster," Lu says. "It had been assumed that quartz was used to grind the stones, but it struck me as unlikely that such a fine finish could be the product of polishing with quartz sand."

Lu’s subsequent X-ray diffraction, electron microprobe analysis, and scanning electron microscopy of the four axes’ composition gave more evidence that quartz could not have polished the stones: Fully 40 percent corundum, the second-hardest material on earth, the only material that could plausibly have been used to finish them so finely was diamond.

To further test whether diamond might have been used to polish the axes, Lu subjected samples of the fourth axe, 4,500 years old and from the Liangzhu culture, to modern machine polishing with diamond, alumina, and a quartz-based silica abrasive. Using an atomic force microscope to examine the polished surfaces on a nanometer scale, he determined that the axe’s original, exceptionally smooth surface most closely resembled -– although was still superior to -– modern polishing with diamond.

The use of diamond by Liangzhu craftsmen is geologically plausible, as diamond sources exist within 150 miles of where the burial axes studied by Lu were found. These ancient workers might have sorted diamonds from gravel using an age-old technique where wet diamond-bearing gravels are run over a greased surface such as a fatty animal hide; only the diamonds adhere to the grease.

The next known use of diamond occurred around 500 BC; it was used after 250 BC in ancient India to drill beads. The earliest authors to reference what is likely diamond, Manilius and Pliny the Elder, lived in Rome during the first century AD.

Lu’s co-authors are Paul M. Chaikin of New York University; Nan Yao of Princeton University; Jenny F. So of the Chinese University of Hong Kong; George E. Harlow of the American Museum of Natural History; and Lu Jianfang and Wang Genfu of the Nanjing Museum. The work was supported primarily by Harvard University’s Asia Center, with additional support from MRSEC grants and Princeton University’s Department of Physics.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>