Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese used diamonds to polish sapphire-rich stone in 2500 BC

14.02.2005


Find provides evidence of earliest known use of diamond and sapphire by prehistoric people

Researchers have uncovered strong evidence that the ancient Chinese used diamonds to grind and polish ceremonial stone burial axes as long as 6,000 years ago -– and incredibly, did so with a level of skill difficult to achieve even with modern polishing techniques. The finding, reported in the February issue of the journal Archaeometry, places this earliest known use of diamond worldwide thousands of years earlier than the gem is known to have been used elsewhere.

The work also represents the only known prehistoric use of sapphire: The stone worked into polished axes by China’s Liangzhu and Sanxingcun cultures around 4000 to 2500 BC has as its most abundant element the mineral corundum, known as ruby in its red form and sapphire in all other colors. Most other known prehistoric artifacts were fashioned from rocks and minerals no harder than quartz. "The physics of polishing is poorly understood; it’s really more an art than a science," says author Peter J. Lu, a graduate student in physics at Harvard University’s Graduate School of Arts and Sciences. "Still, it’s absolutely remarkable that with the best polishing technologies available today, we couldn’t achieve a surface as flat and smooth as was produced 5,000 years ago."



Lu’s work may eventually yield new insights into the origins of ancient China’s trademark Neolithic artifacts, vast quantities of finely polished jade objects. Lu began the research in 1999, as a Princeton University undergraduate. He studied four ceremonial axes, ranging in size from 13 to 22 centimeters, found at the tombs of wealthy individuals. Three of these axes, dating to the Sanxingcun culture of 4000 to 3800 BC and the later Liangzhu culture, came from the Nanjing Museum in China; the fourth, discovered at a Liangzhu culture site at Zhejiang Yuhang Wujiabu in 1993, dates roughly to 2500 BC. "What’s most amazing about these mottled brown and grey stones is that they have been polished to a mirror-like luster," Lu says. "It had been assumed that quartz was used to grind the stones, but it struck me as unlikely that such a fine finish could be the product of polishing with quartz sand."

Lu’s subsequent X-ray diffraction, electron microprobe analysis, and scanning electron microscopy of the four axes’ composition gave more evidence that quartz could not have polished the stones: Fully 40 percent corundum, the second-hardest material on earth, the only material that could plausibly have been used to finish them so finely was diamond.

To further test whether diamond might have been used to polish the axes, Lu subjected samples of the fourth axe, 4,500 years old and from the Liangzhu culture, to modern machine polishing with diamond, alumina, and a quartz-based silica abrasive. Using an atomic force microscope to examine the polished surfaces on a nanometer scale, he determined that the axe’s original, exceptionally smooth surface most closely resembled -– although was still superior to -– modern polishing with diamond.

The use of diamond by Liangzhu craftsmen is geologically plausible, as diamond sources exist within 150 miles of where the burial axes studied by Lu were found. These ancient workers might have sorted diamonds from gravel using an age-old technique where wet diamond-bearing gravels are run over a greased surface such as a fatty animal hide; only the diamonds adhere to the grease.

The next known use of diamond occurred around 500 BC; it was used after 250 BC in ancient India to drill beads. The earliest authors to reference what is likely diamond, Manilius and Pliny the Elder, lived in Rome during the first century AD.

Lu’s co-authors are Paul M. Chaikin of New York University; Nan Yao of Princeton University; Jenny F. So of the Chinese University of Hong Kong; George E. Harlow of the American Museum of Natural History; and Lu Jianfang and Wang Genfu of the Nanjing Museum. The work was supported primarily by Harvard University’s Asia Center, with additional support from MRSEC grants and Princeton University’s Department of Physics.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Donuts, math, and superdense teleportation of quantum information
29.05.2015 | University of Illinois College of Engineering

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>