Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chinese used diamonds to polish sapphire-rich stone in 2500 BC


Find provides evidence of earliest known use of diamond and sapphire by prehistoric people

Researchers have uncovered strong evidence that the ancient Chinese used diamonds to grind and polish ceremonial stone burial axes as long as 6,000 years ago -– and incredibly, did so with a level of skill difficult to achieve even with modern polishing techniques. The finding, reported in the February issue of the journal Archaeometry, places this earliest known use of diamond worldwide thousands of years earlier than the gem is known to have been used elsewhere.

The work also represents the only known prehistoric use of sapphire: The stone worked into polished axes by China’s Liangzhu and Sanxingcun cultures around 4000 to 2500 BC has as its most abundant element the mineral corundum, known as ruby in its red form and sapphire in all other colors. Most other known prehistoric artifacts were fashioned from rocks and minerals no harder than quartz. "The physics of polishing is poorly understood; it’s really more an art than a science," says author Peter J. Lu, a graduate student in physics at Harvard University’s Graduate School of Arts and Sciences. "Still, it’s absolutely remarkable that with the best polishing technologies available today, we couldn’t achieve a surface as flat and smooth as was produced 5,000 years ago."

Lu’s work may eventually yield new insights into the origins of ancient China’s trademark Neolithic artifacts, vast quantities of finely polished jade objects. Lu began the research in 1999, as a Princeton University undergraduate. He studied four ceremonial axes, ranging in size from 13 to 22 centimeters, found at the tombs of wealthy individuals. Three of these axes, dating to the Sanxingcun culture of 4000 to 3800 BC and the later Liangzhu culture, came from the Nanjing Museum in China; the fourth, discovered at a Liangzhu culture site at Zhejiang Yuhang Wujiabu in 1993, dates roughly to 2500 BC. "What’s most amazing about these mottled brown and grey stones is that they have been polished to a mirror-like luster," Lu says. "It had been assumed that quartz was used to grind the stones, but it struck me as unlikely that such a fine finish could be the product of polishing with quartz sand."

Lu’s subsequent X-ray diffraction, electron microprobe analysis, and scanning electron microscopy of the four axes’ composition gave more evidence that quartz could not have polished the stones: Fully 40 percent corundum, the second-hardest material on earth, the only material that could plausibly have been used to finish them so finely was diamond.

To further test whether diamond might have been used to polish the axes, Lu subjected samples of the fourth axe, 4,500 years old and from the Liangzhu culture, to modern machine polishing with diamond, alumina, and a quartz-based silica abrasive. Using an atomic force microscope to examine the polished surfaces on a nanometer scale, he determined that the axe’s original, exceptionally smooth surface most closely resembled -– although was still superior to -– modern polishing with diamond.

The use of diamond by Liangzhu craftsmen is geologically plausible, as diamond sources exist within 150 miles of where the burial axes studied by Lu were found. These ancient workers might have sorted diamonds from gravel using an age-old technique where wet diamond-bearing gravels are run over a greased surface such as a fatty animal hide; only the diamonds adhere to the grease.

The next known use of diamond occurred around 500 BC; it was used after 250 BC in ancient India to drill beads. The earliest authors to reference what is likely diamond, Manilius and Pliny the Elder, lived in Rome during the first century AD.

Lu’s co-authors are Paul M. Chaikin of New York University; Nan Yao of Princeton University; Jenny F. So of the Chinese University of Hong Kong; George E. Harlow of the American Museum of Natural History; and Lu Jianfang and Wang Genfu of the Nanjing Museum. The work was supported primarily by Harvard University’s Asia Center, with additional support from MRSEC grants and Princeton University’s Department of Physics.

Steve Bradt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>