Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity - Electrons in Single File Provide New Insights

22.11.2004


A team at the University of Innsbruck, Austria has been successful in conducting electrons in metals along predetermined channels. This behaviour, observed for the first time in metals, provides important insights into the interactions of electrons - and on how the phenomenon of the current flow without any resistance loss, termed super-conductivity, can occur. Thereby this project aided by the Austrian Science Fund (FWF) combines fundamental research, at its best, with potential applications in the future.



High-temperature superconductors are ceramic materials that conduct electricity without resistance, and thus without loss, below a certain temperature. At higher temperatures, the behaviour rapidly changes and experiences resistance. Such discontinuous changes due to external influences are typical for the so-called "smart materials". Their discontinuous behaviour is closely linked with a mutual dependence of spatially confined electrons, giving rise to a commonly coordinated motion pattern. So far this dependence termed as correlation had been observed only in non-metals.

Electrons in Single File...


Now a team under Prof. Erminald Bertel, Institute of Physical Chemistry, University of Innsbruck, Austria, has for the first time succeeded in forcing the electrons in a metal as well into such a mutual dependence. For this purpose, the researchers first of all created nano-structures on the surface of metal single crystals, which are crystals with uniform lattice structure.

Prof. Bertel, the project director, explains: "Normally, the electrons in a metal spread in all three directions in space. But in metal single crystals, some of the electrons are confined to the surface and therefore can move only in two dimensions. Nano-structures can then further restrict their freedom of movement. To produce such structures, the surfaces of copper crystals for instance can be oxidised in such a way that free copper channels of 3 nanometres width lie between ridges of copper oxide. In these channels, the electrons can only move unidimensionally. Also on platinum crystals atom chains can be arranged to run parallel across the surface with approximately 0.8 nanometre spacing. Certain electrons can then only spread along these chains."

Once the electrons were forced into a controlled motion along the channels or chains, Professor Bertel’s team was able to observe something fascinating - depending on experimental conditions, the electrons move within the individual channels entirely independent of each other, i.e. incoherently, or they align their movements across all channels. In such a state of motion that is described as coherent, the electrons can no longer be assigned to individual channels, but are "de-localised".

... When the Temperature is Right

For a closer analysis of the states of the electrons, the researchers at Innsbruck also made use of photoelectron spectroscopy. In this method, the energetic distribution of electrons emitted from the surface due to light (photon) absorption is measured. Interestingly, the spectra showed that above a critical temperature, the electrons pass from a coherent into an incoherent state.

A completely similar temperature dependence of photoelectron spectra, however, is already known in superconductors, but was explained differently so far. Thus the observations of the Innsbruck team suggest that the superconductivity in ceramic superconductors is connected to a transition of electrons from an incoherent state into a coherent state.

Prof. Bertel: "The transport of electricity without loss due to electric resistance could mean a significant contribution to energy saving and to the solution of some environmental problems. But at present our comprehension of superconductivity does not allow the synthesis of superconductive materials that can afford a commercial use under economical conditions. Our team has achieved in adding a small chip to the mosaic, which brings us a little closer to such applications."

Prof. Erminald Bertel | alfa
Further information:
http://www.fwf.ac.at/en/press/superconductivity.html
http://www.prd.at
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>