Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polaroid Sunglasses let astronomers take a closer look at Black Holes

11.11.2004


An international team led by an Edinburgh astronomer have discovered that by studying polarised light from black holes they can focus much more closely on what exactly is going on around them. The work is published this week in the monthly notices of the Royal Astronomical Society on November 11th.




Studying black holes at the centre of galaxies is difficult. A huge amount of material is falling on to the centre in an active black hole system, and this falling material is thought to power the black hole, but scientists still don’t understand this powering mechanism. One critical reason is that these black holes are just too far away for astronomers to isolate the light from them - or more accurately, the light from the compact region where the black holes are actually producing their energy.

However, Kishimoto at the University of Edinburgh and the international team of Antonucci at UC Santa Barbara, Boisson at Paris Observatory, and Blaes also at UC Santa Barbara, have used the Keck I telescope in Hawaii and European Southern Observatory’s Very Large Telescope in Chile, to do this isolation of the light. They have looked at a small part of the light emitted from black holes - light that has been scattered as it passes through the clouds very nearby. This scattered light can cleverly be picked up by looking through a polaroid filter just like the lens of polaroid sunglasses, which essentially blocks the unwanted light from elsewhere in the galaxy. The scattered light is polarised so the light waves all line up in the same direction and can pass through the Polaroid filter, but light from the surrounding area which is not polarised is excluded by the filter.


Dr Kishimoto, who leads the team, explained the importance of the new method: "For the first time we can use visible light to focus on the part of a galaxy that is very close to the black hole. We are interested in an area only about one light-day across. Until now, without using Polaroid filters, we couldn’t separate the visible light from the black hole from the light coming from a much larger region about 100 light-days across." To put this in context, the galaxies surrounding the black holes are about 30,000 light years across.

As a result of this closer look the team have found a new signal in the observed light that can provide information about the material around a black hole. The signal, called a ’Balmer edge’ feature, reveals properties of the material and will allow the team to carry out more detailed modelling of the temperature and density of the region near black holes than has been possible before now. This feature is commonly used to diagnose the nature of the surface of the Sun and other stars, but has never before been seen in visible light from black holes.

The next step is for Kishimoto and his team to take a look at more black holes using this technique to see if the black holes at the centre of different types of galaxy all look the same. They can then try to understand the mechanism that powers a black hole. Kishimoto and the team are now observing many other black holes using other large telescopes.

1. One light-day is the distance light travels in one day i.e. 1/365 of a light-year.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>