Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring Cosmic Distances with Stellar Heart Beats

29.10.2004


VLTI Watches the Changing Size of Bright Southern Cepheids

Taking advantage of the very high spatial resolution provided by the Very Large Telescope Interferometer, a team of French and Swiss astronomers [1] has measured directly the change in angular diameter of four southern Cepheid variable stars over their pulsation cycle.

When combined with spectroscopic radial velocity measurements, this allowed the astronomers to measure very accurately the distances of these stars in a quasi-geometrical way, and to calibrate the zero-point of the Cepheid Period-Luminosity empirical law.



These observations constitute a fundamental step towards an independent verification of the extragalactic distance scale by interferometry.

Cepheids and the cosmic distance ladder

It is very difficult to measure the distance to an astronomical object. In fact, this is one of the greatest challenges facing astronomers. There is indeed no accurate, direct way to determine the distance to galaxies beyond the Milky Way: astronomers first determine the distance to nearby stars in our galaxy as accurately as possible and then use a series of other techniques that reach progressively further into space to estimate distances to more distant systems. This process is often referred as the "cosmic distance ladder".

Over the years, a number of different distance estimators have been found. One of these is a particular class of stars known as Cepheid variables. They are used as one of the first "steps" on this cosmic distance ladder.

Cepheids are rare and very luminous stars whose luminosity varies in a very regular way. They are named after the star Delta Cephei in the constellation of Cepheus, the first known variable star of this particular type and bright enough to be easily seen with the unaided eye.

In 1912, American astronomer Henrietta Leavitt observed 20 variable stars of the Cepheid-type in the Small Magellanic Cloud (SMC), one of the closest galaxies to the Milky Way. For all purposes, these stars are all at the same distance (the size of the SMC is negligible compared to its much larger distance from us). Apparently brighter stars in this group are thus also intrinsically brighter (more luminous). Henrietta Leavitt discovered a basic relation between the intrinsic brightness and the pulsation period of Cepheid variable stars in the SMC and showed that intrinsically brighter Cepheids have longer periods.

This relation is now known as the "Period-Luminosity relation" and is an important way to derive the distance to stars of this type. By measuring the period of a Cepheid star, its intrinsic brightness can be deduced and from the observed apparent brightness, the distance may then be calculated. In this way, Cepheid stars are used by astronomers as one of the "standard candles" in the Universe. They act either as distance indicators themselves or are used to calibrate other distance indicators.

The Cepheid stars have taken on an even more important role since the Hubble Space Telescope Key Project on the extragalactic distance scale relies completely on them for the calibration of distance indicators to reach cosmologically large distances. In other words, if the calibration of the Cepheid Period-Luminosity relation were wrong, the entire extragalactic distance scale and with it, the rate of cosmic expansion and the related acceleration, as well as the estimated age of the Universe, would also be off.

A main problem is thus to calibrate as accurately as possible the Period-Luminosity relation for nearby Cepheids. This requires measuring their distances with the utmost precision, a truly daunting task. And this is where interferometry now enters the picture.

The Baade-Wesselink method

Independent determinations of the distance of variable stars make use of the so-called Baade-Wesselink method, named after astronomers Walter Baade (1893 - 1960) and Adriaan Wesselink (1909 - 1995). With this classical method, the variation of the angular diameter of a Cepheid variable star is inferred from the measured changes in brightness (by means of model atmosphere calculations) as it pulsates. Spectroscopy is then used to measure the corresponding radial velocity variations, hence providing the linear distance over which the star’s outer layers have moved. By dividing the angular and linear measures, the distance to the star is obtained.

This sounds straightforward. However, it would obviously be much better to measure the variation of the radius directly and not to rely on model atmosphere calculations. But here the main problem is that, despite their apparent brightness, all Cepheids are situated at large distances. Indeed, the closest Cepheid star (excluding the peculiar star Polaris), Delta Cephei, is more than 800 light-years away. Even the largest Cepheids in the sky subtend an angle of only 0.003 arcsec. To observe this is similar to view a two-storey house on the Moon. And what astronomers want to do is to measure the change of the stars’ sizes, amounting to only a fraction of this!

Such an observing feat is only possible with long-baseline interferometry. Also on this front, the VLT Interferometer is now opening a new field of observational astrophysics.

Three VLTI baselines

Some time ago, an undaunted team of French and Swiss astronomers [1] started a major research programme aimed at measuring the distance to several Cepheids by means of the above outlined Baade-Wesselink interferometric method. For these observations they combined sets of two beams - one set from the two VLTI Test Siderostats with 0.35m aperture and the other set from two Unit Telescopes (Antu and Melipal; 8.2m mirrors) - with the VINCI (VLT Interferometer Commissioning Instrument) facility. Three VLTI baselines were used for this programme with, respectively, 66, 140 and 102.5m ground length. ESO PR Photo 30b/04 shows the respective positions on the VLTI platform. The observations were made in the near-infrared K-band.

A total of 69 individual angular diameter measurements were obtained with the VLTI, over more than 100 hours of total telescope time, distributed over 68 nights; the largest angular diameter measured was 0.0032 arcsec (L Car at maximum).

Seven Cepheids observable from Paranal Observatory were selected for this programme: X and W Sagittarii, Eta Aquilae, Beta Doradus, Zeta Gemini, Y Ophiocus and L Carinae. Their periods range from 7 to 35.5 days, a fairly wide interval and an important advantage to properly calibrate the Period-Luminosity relation.

The distances to four of the stars (Eta Aql, W Sgr, Beta Dor and L Car) were derived using the interferometric Baade-Wesselink method, as their pulsation is detected by the VLTI. ESO PR Photo 30c/04 shows the angular diameter measurements and the fitted radius curve of L Car (P = 35.5 days); this measures its distance with a relative precision better than 5%.

For the remaining three objects of the sample (X Sgr, Zeta Gem and Y Oph), a hybrid method was applied to derive their distances, based on their average angular diameter and pre-existing estimations of their linear diameters.

The new calibration

Combining the distances measured by this programme with the apparent magnitudes of the stars, the astronomers determined the absolute magnitude (intrinsic brightness) of these stars and arrived at a very precise calibration of the zero-point of the Period-Luminosity relation (assuming the slope from previous work).

It turned out that this new and independently derived value of the zero-point is exactly the same as the one obtained during previous work based on a large number of relatively low-precision Cepheid distance measurements by the ESA Hipparcos astrometric satellite. The agreement between these two independent, geometrical calibrations is remarkable and greatly increases the confidence in the cosmic distance scale now in use.

Prospects with AMBER

With 1.8m Auxiliary Telescopes soon to be ready on the VLTI platform, the astronomers will be able to observe many more Cepheids with a precision at least as good as the present high-precision VINCI observations of L Car. In addition, the future AMBER instrument will extend the VLTI capabilities toward shorter wavelengths (J and H bands), providing even higher spatial resolution than what is now possible with VINCI (K band).

The combined effect of these two improvements will be to extend significantly the accessible sample of Cepheids. It is expected that the distances to more than 30 Cepheids will then be measurable with a precision better than 5%. This will provide a high precision calibration of both the reference point (down to ±0.01 mag) and the slope of the Galactic Cepheid Period-Luminosity.

More information

The information contained in this press release is based on a series of three research articles which are being published by the European research journal "Astronomy & Astrophysics" by P. Kervella and collaborators (Paper I : 2004, A&A, 416, 941, Paper II : 2004, A&A, 423, 327 and Paper III : in press). The present press release is published exactly three years after the first observations with two 8.2-m VLT Unit Telescopes and the VLTI with VINCI were achieved, cf. ESO PR 23/01.

Note

[1]: The team consists of Pierre Kervella and Vincent Coude du Foresto at the Paris Observatory in France, David Bersier of the Space Telescope Science Institute (USA), Nicolas Nardetto and Denis Mourard (Observatoire de la Cote d’Azur, France), and Pascal Fouque (Observatoire Midi-Pyrenees, France).

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/pr-25-04.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>