Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unveil mysteries of plasma jets on the Sun

29.07.2004


Scientists at the University of Sheffield and Lockheed Martin Solar and Astrophysics Lab have solved a 127-year-old problem about the origin of supersonic plasma jets (spicules) which continuously shoot up from the Sun. Their findings are published in today’s edition of Nature.



Spicules, are jets of gas or plasma that are propelled upwards from the surface of the Sun at speeds of about 90,000 kilometres per hour. They are fairly short lived, with each jet lasting only about 5 minutes, but reach heights of 5000 kilometres above the Sun’s surface. Their short life span and small size (less than 600 km) have meant that, although there are about 100,000 spicules at any one time in the Sun’s chromosphere, until now they have remained largely unexplained.

One of the reasons why these energetic jets are studied is because thay may contribute to solar wind. The solar wind is a stream of particles that sweeps past the Earth’s orbit and any disturbance to it can cause changes to the Earth’s upper atmosphere and space environment, damaging satellites in orbit.


The research team solved the problem of how spicules are formed by taking simultaneous images of both the surface of the Sun and the spicules using the Swedish Solar telescope and the TRACE satellite, which demonstrated that the jets often occur periodically (every five minutes or so) at the same location. The research team were able to use this data to develop a computer model of the Sun’s atmosphere, which showed that spicules are caused by sound waves on the surface of the Sun, that also occur periodically every five minutes or so.

Professor Erdélyi von Fáy-Siebenbürgen from the University of Sheffield and one of the leaders of the study explains, “The sound waves on the Sun’s surface are usually damped before they reach the atmosphere. However sometimes the sound waves pass through the damping zone and leak into the solar atmosphere. Our computer model shows that when this happens the sound waves develop into shock waves, which propel matter upwards, forming a supersonic jet of plasma, or spicule.

“We measured the waves at the surface of the Sun and applied our model to try to predict when spicules would shoot up and were pleased to find that the model predicts them well.

“Now we know how spicules are formed, scientists will be able to research them more thoroughly and start examining if, and how much, they contribute to the solar wind.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>