Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists unveil mysteries of plasma jets on the Sun


Scientists at the University of Sheffield and Lockheed Martin Solar and Astrophysics Lab have solved a 127-year-old problem about the origin of supersonic plasma jets (spicules) which continuously shoot up from the Sun. Their findings are published in today’s edition of Nature.

Spicules, are jets of gas or plasma that are propelled upwards from the surface of the Sun at speeds of about 90,000 kilometres per hour. They are fairly short lived, with each jet lasting only about 5 minutes, but reach heights of 5000 kilometres above the Sun’s surface. Their short life span and small size (less than 600 km) have meant that, although there are about 100,000 spicules at any one time in the Sun’s chromosphere, until now they have remained largely unexplained.

One of the reasons why these energetic jets are studied is because thay may contribute to solar wind. The solar wind is a stream of particles that sweeps past the Earth’s orbit and any disturbance to it can cause changes to the Earth’s upper atmosphere and space environment, damaging satellites in orbit.

The research team solved the problem of how spicules are formed by taking simultaneous images of both the surface of the Sun and the spicules using the Swedish Solar telescope and the TRACE satellite, which demonstrated that the jets often occur periodically (every five minutes or so) at the same location. The research team were able to use this data to develop a computer model of the Sun’s atmosphere, which showed that spicules are caused by sound waves on the surface of the Sun, that also occur periodically every five minutes or so.

Professor Erdélyi von Fáy-Siebenbürgen from the University of Sheffield and one of the leaders of the study explains, “The sound waves on the Sun’s surface are usually damped before they reach the atmosphere. However sometimes the sound waves pass through the damping zone and leak into the solar atmosphere. Our computer model shows that when this happens the sound waves develop into shock waves, which propel matter upwards, forming a supersonic jet of plasma, or spicule.

“We measured the waves at the surface of the Sun and applied our model to try to predict when spicules would shoot up and were pleased to find that the model predicts them well.

“Now we know how spicules are formed, scientists will be able to research them more thoroughly and start examining if, and how much, they contribute to the solar wind.”

Lorna Branton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>