Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unveil mysteries of plasma jets on the Sun

29.07.2004


Scientists at the University of Sheffield and Lockheed Martin Solar and Astrophysics Lab have solved a 127-year-old problem about the origin of supersonic plasma jets (spicules) which continuously shoot up from the Sun. Their findings are published in today’s edition of Nature.



Spicules, are jets of gas or plasma that are propelled upwards from the surface of the Sun at speeds of about 90,000 kilometres per hour. They are fairly short lived, with each jet lasting only about 5 minutes, but reach heights of 5000 kilometres above the Sun’s surface. Their short life span and small size (less than 600 km) have meant that, although there are about 100,000 spicules at any one time in the Sun’s chromosphere, until now they have remained largely unexplained.

One of the reasons why these energetic jets are studied is because thay may contribute to solar wind. The solar wind is a stream of particles that sweeps past the Earth’s orbit and any disturbance to it can cause changes to the Earth’s upper atmosphere and space environment, damaging satellites in orbit.


The research team solved the problem of how spicules are formed by taking simultaneous images of both the surface of the Sun and the spicules using the Swedish Solar telescope and the TRACE satellite, which demonstrated that the jets often occur periodically (every five minutes or so) at the same location. The research team were able to use this data to develop a computer model of the Sun’s atmosphere, which showed that spicules are caused by sound waves on the surface of the Sun, that also occur periodically every five minutes or so.

Professor Erdélyi von Fáy-Siebenbürgen from the University of Sheffield and one of the leaders of the study explains, “The sound waves on the Sun’s surface are usually damped before they reach the atmosphere. However sometimes the sound waves pass through the damping zone and leak into the solar atmosphere. Our computer model shows that when this happens the sound waves develop into shock waves, which propel matter upwards, forming a supersonic jet of plasma, or spicule.

“We measured the waves at the surface of the Sun and applied our model to try to predict when spicules would shoot up and were pleased to find that the model predicts them well.

“Now we know how spicules are formed, scientists will be able to research them more thoroughly and start examining if, and how much, they contribute to the solar wind.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>