Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A White Dwarf Explodes Inside a Dense Circumstellar Disk

23.03.2004


Peeking at a Puzzling Supernova with Spectropolarimetry


The stars in the binary system are much too small to be visible, but spectropolarimetry reveals that ejecta from an exploding white dwarf in SN 2002ic (dark red) is interacting with surrounding matter from a companion star, distributed primarily in the disk (dark blue); hydrodynamic shocks keep the supernova luminous nearly a year after its explosion. Outside the disk the density of the circumstellar matter is lower (gray). (Illustration: Wang)


A structure that may resemble the progenitor of SN 2002ic: the NGC 6302 butterfly nebula is the remnant of a star that shed most of its outer layers before contracting, and may be one member of a binary system. The center of the system is obscured by a dark, dusty, disk-like structure, but radiation escaping perpendicular to the disk heats and illuminates the circumstellar material.
(Photo: ESO VLT)



By measuring polarized light from an unusual exploding star, an international team of astrophysicists and astronomers has worked out the first detailed picture of a Type Ia supernova and the distinctive star system in which it exploded.

Using the European Southern Observatory’s Very Large Telescope in Chile, the researchers determined that supernova 2002ic exploded inside a flat, dense, clumpy disk of dust and gas, previously blown away from a companion star. Their work suggests that this and some other precursors of Type Ia supernovae resemble the objects known as protoplanetary nebulae, well known in our own Milky Way galaxy.


Lifan Wang of Lawrence Berkeley National Laboratory, Dietrich Baade of the European Southern Observatory (ESO), Peter Höflich and J. Craig Wheeler of the University of Texas at Austin, Koji Kawabata of the National Astronomical Observatory of Japan, and Ken’ichi Nomoto of the University of Tokyo report their findings in the 20 March 2004 issue of Astrophysical Journal Letters.

Casting supernovae to type

Supernovae are labeled according to the elements visible in their spectra: Type I spectra lack hydrogen lines, while Type II spectra have these lines. What makes SN 2002ic unusual is that its spectrum otherwise resembles a typical Type Ia supernova but exhibits a strong hydrogen emission line.

Type II and some other supernovae occur when the cores of very massive stars collapse and explode, leaving behind extremely dense neutron stars or even black holes. Type Ia supernovae, however, explode by a very different mechanism.

"A Type Ia supernova is a metallic fireball," explains Berkeley Lab’s Wang, a pioneer in the field of supernova spectropolarimetry. "A Type Ia has no hydrogen or helium but lots of iron, plus radioactive nickel, cobalt, and titanium, a little silicon, and a bit of carbon and oxygen. So one of its progenitors must be an old star that has evolved to leave behind a carbon-oxygen white dwarf. But carbon and oxygen, as nuclear fuels, do not burn easily. How can a white dwarf explode?"

The most widely accepted Type Ia models assume that the white dwarf -- roughly the size of Earth but packing most of the mass of the sun -- accretes matter from an orbiting companion until it reaches 1.4 solar masses, known as the Chandrasekhar limit. The now superdense white dwarf ignites in a mighty thermonuclear explosion, leaving behind nothing but stardust.

Other schemes include the merger of two white dwarfs or even a lone white dwarf that re-accretes the matter shed by its younger self. Despite three decades of searching, however, until the discovery and subsequent spectropolarimetric studies of SN 2002ic, there was no firm evidence for any model.

In November of 2002, Michael Wood-Vasey and his colleagues in the Department of Energy’s Nearby Supernova Factory based at Berkeley Lab reported the discovery of SN 2002ic, shortly after its explosion was detected almost a billion light-years away in an anonymous galaxy in the constellation Pisces.

In August of 2003, Mario Hamuy from the Carnegie Observatories and his colleagues reported that the source of the copious hydrogen-rich gas in SN 2002ic was most likely a so-called Asymptotic Giant Branch (AGB) star, a star in the final phases of its life, with three to eight times the mass of the sun -- just the sort of star that, after it has blown away its outer layers of hydrogen, helium, and dust, leaves behind a white dwarf.

Moreover, this seemingly self-contradictory supernova -- a Type Ia with hydrogen -- was in fact similar to other hydrogen-rich supernovae previously designated Type IIn. This in turn suggested that, while Type Ia supernovae are indeed remarkably similar, there may be wide differences among their progenitors.

Because Type Ia supernovae are so similar and so bright -- as bright or brighter than whole galaxies -- they have become the most important astronomical standard candles for measuring cosmic distances and the expansion of the universe. Early in 1998, after analyzing dozens of observations of distant Type Ia supernovae, members of the Department of Energy’s Supernova Cosmology Project based at Berkeley Lab, along with their rivals in the High-Z Supernova Search Team based in Australia, announced the astonishing discovery that the expansion of the universe is accelerating.

Cosmologists subsequently determined that over two-thirds of the universe consists of a mysterious something dubbed "dark energy," which stretches space and drives the accelerating expansion. But learning more about dark energy will depend on careful study of many more distant Type Ia supernovae, including a better knowledge of what kind of star systems trigger them.

Picturing structure with spectropolarimetry

The spectropolarimetry of SN 2002ic has provided the most detailed picture of a Type Ia system yet. Polarimetry measures the orientation of light waves; for example, Polaroid sunglasses "measure" horizontal polarization when they block some of the light reflected from flat surfaces. In an object like a cloud of dust or a stellar explosion, however, light is not reflected from surfaces but scattered from particles or from electrons.

If the dust cloud or explosion is spherical and uniformly smooth, all orientations are equally represented and the net polarization is zero. But if the object is not spherical -- shaped like a disk or a cigar, for example -- more light will oscillate in some directions than in others.

Even for quite noticeable asymmetries, net polarization rarely exceeds one percent. Thus it was a challenge for the ESO spectropolarimetry instrument to measure faint SN 2002ic, even using the powerful Very Large Telescope. It took several hours of observation on four different nights to acquire the necessary high-quality polarimetry and spectroscopy data.

The team’s observations came nearly a year after SN 2002ic was first detected. The supernova had grown much fainter, yet its prominent hydrogen emission line was six times brighter. With spectroscopy the astronomers confirmed the observation of Hamuy and his associates, that ejecta expanding outward from the explosion at high velocity had run into surrounding thick, hydrogen-rich matter.

Only the new polarimetric studies, however, could reveal that most of this matter was shaped as a thin disk. The polarization was likely due to the interaction of high-speed ejecta from the explosion with the dust particles and electrons in the slower-moving surrounding matter. Because of the way the hydrogen line had brightened long after the supernova was first observed, the astronomers deduced that the disk included dense clumps and had been in place well before the white dwarf exploded.

"These startling results suggest that the progenitor of SN 2002ic was remarkably similar to objects that are familiar to astronomers in our own Milky Way, namely protoplanetary nebulae," says Wang. Many of these nebulae are the remnants of the blown-away outer shells of Asymptotic Giant Branch stars. Such stars, if rotating rapidly, throw off thin, irregular disks.

A matter of timing

For a white dwarf to collect enough material to reach the Chandrasekhar limit takes a million years or so. By contrast, an AGB star loses copious amounts of matter relatively quickly; the protoplanetary-nebula phase is transitory, lasting only a few hundreds or thousands of years before the blown-off matter dissipates. "It’s a small window," says Wang, not a long enough time for the leftover core (itself a white dwarf) to re-accrete enough material to explode.

Thus it’s more likely that a white dwarf companion in the SN 2002ic system was already busily collecting matter long before the nebula formed. Because the protoplanetary phase lasts only a few hundred years, and assuming a Type Ia supernova typically takes a million years to evolve, only about a thousandth of all Type Ia supernovae are expected to resemble SN 2002ic. Fewer still will exhibit its specific spectral and polarimetric features, although "it would be extremely interesting to search for other Type Ia supernovae with circumstellar matter," Wang says.

Nevertheless, says Dietrich Baade, principal investigator of the polarimetry project that used the VLT, "it’s the assumption that all Type Ia supernovae are basically the same that permits the observations of SN 2002ic to be explained."

Binary systems with different orbital characteristics and different kinds of companions at different stages of stellar evolution can still give rise to similar explosions, through the accretion model. Notes Baade, "The seemingly peculiar case of SN 2002ic provides strong evidence that these objects are in fact very much alike, as the stunning similarity of their light curves suggests."

By showing the distribution of the gas and dust, spectropolarimetry has demonstrated why Type Ia supernovae are so much alike even though the masses, ages, evolutionary states, and orbits of their precursor systems may differ so widely.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.

Paul Preuss | LBNL
Further information:
http://www.lbl.gov/Science-Articles/Archive/Phys-white-dwarf.html
http://www.lbl.gov/Science-Articles/Archive/assets/images/2004/Mar-22/H-emission-2002ic.pdf

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>