Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cranfield University reaches for the stars


Looking into the night sky you may see a few stars and the moon. Astronomers, however, are looking for more than this – they are looking for Earth-like planets, which, with a little help from Cranfield University, they may be able to find.

As part of a four-year collaborative project, Cranfield University professors Paul Shore, Dave Stephenson and John Nicholls, together with Dr David Walker and Dr Peter Doel, both of University College London, and OpTIC Technium, are set to establish a unique UK national facility in North Wales for making large optics.

The project, also involving three industrial partners – Cranfield Precision, Zeeko Ltd and Rapt Industries, has been made possible by a £3.526m grant from the UK Joint Research Council’s Basic Technology Programme.

Professor Shore explained the ambitious project: “Scientists attempting to find Earth-like planets near to far-away stars have their job made more difficult because, unlike stars which are bright, Earth-like planets are not. This makes them harder to see, so the plan is to build extremely large telescopes to try and find them.

“It is here we will be making our mark by developing a new ultra precision processing facility for finishing the optics, or segments as we refer to them, which interlock to produce the extra large telescopic mirrors.

“In precision production engineering terms, the manufacture of these segments for the next generation of large telescope designs is probably the most significant precision engineering challenge we have seen,” said Professor Shore. “The aim is to produce ultra precision surfaces at ten times the accuracy and with ten times greater speed than current state-of-the-art.

“Each partner involved in this project is a key piece of the jigsaw and it is only when we work together as a cohesive team that we can offer the UK the possibility of moving into the market selling segments for such telescopes.”

These telescopes are extremely large indeed and scientists in the US are building one that is 30m in diameter – the size of a tennis court – while the most ambitious telescope design concept is 100m diameter – approaching the size of the new Wembley stadium.

Angelisa Conby | Cranfield University
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>