Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cranfield University reaches for the stars

13.02.2004


Looking into the night sky you may see a few stars and the moon. Astronomers, however, are looking for more than this – they are looking for Earth-like planets, which, with a little help from Cranfield University, they may be able to find.



As part of a four-year collaborative project, Cranfield University professors Paul Shore, Dave Stephenson and John Nicholls, together with Dr David Walker and Dr Peter Doel, both of University College London, and OpTIC Technium, are set to establish a unique UK national facility in North Wales for making large optics.

The project, also involving three industrial partners – Cranfield Precision, Zeeko Ltd and Rapt Industries, has been made possible by a £3.526m grant from the UK Joint Research Council’s Basic Technology Programme.


Professor Shore explained the ambitious project: “Scientists attempting to find Earth-like planets near to far-away stars have their job made more difficult because, unlike stars which are bright, Earth-like planets are not. This makes them harder to see, so the plan is to build extremely large telescopes to try and find them.

“It is here we will be making our mark by developing a new ultra precision processing facility for finishing the optics, or segments as we refer to them, which interlock to produce the extra large telescopic mirrors.

“In precision production engineering terms, the manufacture of these segments for the next generation of large telescope designs is probably the most significant precision engineering challenge we have seen,” said Professor Shore. “The aim is to produce ultra precision surfaces at ten times the accuracy and with ten times greater speed than current state-of-the-art.

“Each partner involved in this project is a key piece of the jigsaw and it is only when we work together as a cohesive team that we can offer the UK the possibility of moving into the market selling segments for such telescopes.”

These telescopes are extremely large indeed and scientists in the US are building one that is 30m in diameter – the size of a tennis court – while the most ambitious telescope design concept is 100m diameter – approaching the size of the new Wembley stadium.

Angelisa Conby | Cranfield University
Further information:
http://www.cranfield.ac.uk/university/press/2004/13022004.cfm

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>