Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists discover massive forming galaxies

18.09.2003


A Lawrence Livermore National Laboratory astrophysicist, in collaboration with international researchers, has found evidence for the synchronous formation of massive, luminous elliptical galaxies in young galaxy clusters.



The forming galaxies were detected at sub-millimeter wavelengths. Emission at these wavelengths is due to dust from young stars that is heated by the stars or by active black holes. The galaxies were grouped around high-red shift radio galaxies, the most massive systems known, suggesting that they all formed at approximately the same time.

In the present universe, the most massive galaxies are elliptical galaxies, which are found in the centers of rich galaxy clusters. The stars in these galaxies are now old, and must have formed at much earlier times. The enormous bursts of star formation that build these galaxies produce large quantities of dust that can be observed at submillimeter wavelengths.


Wil van Breugel, of Livermore’s Institute of Geophysics and Planetary Physics, along with scientists from the University of Edinburgh, the University of Durham, Instituto Nacional de Astrofiscia and Leiden Observatory in The Netherlands, present their research, "The Formation of Cluster Elliptical Galaxies as Revealed by Extensive Star Formation," in the Sept. 18 edition of Nature.

Earlier sub-millimeter studies of high-red shift radio galaxies have shown that their star-formation rates are large enough to build a massive galaxy. However, that research provided no information on the spatial extent of the emission or on the star-formation in their environments. By mapping seven objects with varying red shifts, the team was able to illustrate the distribution of dust-reradiated emission in and around the radio galaxies.

"One of the most striking aspects of these maps is that we can see that the dust emission from the central radio galaxy is very extended, the size of many times the diameter of our own galaxy," van Breugel said. "But even more interesting is that we also found other massive forming galaxies near these radio galaxies, suggesting that they all started their formation at approximately the same time." Models of galaxy formation show that the most massive galaxies form in overdense regions that then form clusters of galaxies.

The discovery of groups of luminous, dusty galaxies at high red shift suggests that the scientists may have witnessed this process for the first time.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>