Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore scientists achieve first full mapping of phonons in plutonium

22.08.2003


Making a landmark event in the history of the experimental investigation of plutonium, scientists from the Lawrence Livermore National Laboratory for the first time have fully mapped the phonons in gallium-stabilized delta plutonium.



The experiment promises to reveal much about the physics and material properties of plutonium and its alloys.

The research, conducted in collaboration with researchers at the European Synchrotron Radiation Facility in Grenoble, France, and the University of Illinois at Champaign- Urbana- and led by Livermore physical chemist Joe Wong will be published in the Aug. 22 edition of Science.


Other Livermore researchers include Daniel Farber, Florent Occelli, Adam Schwartz, Mark Wall and Carl Boro.

Wong’s team took the first measurements of the complete phonon dispersions in a delta plutonium-gallium alloy, using a unique high-resolution inelastic X-ray scattering technique developed at the European Synchrotron Radiation Facility.

Since its discovery in 1941, many technical and safety issues have made experimental observations of plutonium extremely difficult. Measuring the phonon dispersion curves is key to understanding the properties of plutonium materials such as force constants, sound velocities, elasticity, phase stability and thermodynamics.

But for years, scientists have been plagued trying to measure these phonon dispersion curves in plutonium because they were unable to grow the large single crystals necessary for inelastic neutron scattering.

Instead, Wong and his colleagues used an inelastic X-ray scattering technique to impinge a micro-beam from a highly brilliant X-ray synchrotron source on a single grain in a polycrystalline plutonium alloy to make their measurements.

"The phonon dispersions are very fundamental to the understanding of the properties and behavior of plutonium and its alloys," Wong said. "The new phonon data will greatly enhance scientists’ understanding of the transformations and phases plutonium undergoes in different environments and over time. Basic knowledge of this sort is much needed and contributes greatly to the Laboratory’s science-based stockpile stewardship mission to ensure the safety and reliability of the nation’s aging nuclear weapons without testing."


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>