Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers map the hidden Universe

13.05.2003


Astronomers from Cardiff University are completing the first survey ever for cosmic hydrogen, the primeval gas which emerged from the Big Bang to form all the stars and galaxies we can see today.



Since 1997 the astronomers, with their Australian colleagues, have been using two giant radio telescopes, the 64-metre diameter dish at Parkes in New South Wales, Australia, and the 76-metre dish at Jodrell Bank in Cheshire, England to build up an atlas of the heavens as mapped by cosmic hydrogen.

The survey is fundamental for two entirely different reasons. First of all the night sky, in cosmic terms, is quite bright so that structures dimmer than the sky will be invisible to optical telescopes - but not to the radio. Thus parts of the ’Invisible Universe’ should come to light for the first time - and they do.


Secondly, finding the gas left behind when the galaxies formed should help decode the evolution of the Universe as it expands. For instance the team finds, for the very first time, infantile galaxies still apparently commingling out of pristine gas.

So many exciting and surprising discoveries are emerging from the survey that Professor Mike Disney and his team find themselves constantly dashing around the globe to follow them up with other telescopes in Australia, New Mexico, Holland, Chile, the Canaries and South Africa, to say nothing of the Hubble Space Telescope.

"We are racing against time, against man-made radio-interference which will soon blind us to much of the cosmos for ever," said Professor Disney.

"We feel very privileged," he added. "We are like the early navigators glimpsing new continents for the first time. There are surprises and inevitably we only understand a fraction of what we encounter. The real challenge is to distinguish what is actually there from what we wanted to find. But none amongst us would wish to be anywhere else."

Members of Professor Disney’s team include Hugh Lang (engineer), Dr Robert Minchin and Dr Erwin de Blok, Diege Garcia and Marco Grossi (PhD students) and Thomas Targett (undergraduate student).

Dr Robert Minchin | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>