Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers conduct most sensitive search for new forces

27.02.2003


University of Colorado at Boulder researchers have conducted the most sensitive search to date for gravitational-strength forces between masses separated by only twice the diameter of a human hair, but they have observed no new forces.



The results rule out a substantial portion of parameter space for new forces with a range between one-tenth and one-hundredth of a millimeter, where theoretical physicists using string theory have proposed that "moduli forces" might be detected, according to the researchers.

In string theory, which is considered the most promising approach to the long-sought unified description of all known forces and matter, everything in the universe is proposed to be composed of tiny loops of vibrating strings.


"Our results represent the most sensitive search for new forces at this length," said lead author Joshua Long, a former postdoctoral researcher in the lab of CU-Boulder physics Professor John Price.

Long now works at the Los Alamos Neutron Science Center in Los Alamos, N.M.

A paper on the subject by Long, Price, Allison Churnside, Eric Gulbis and Michael Varney of CU-Boulder will appear in the Feb. 27 issue of the journal Nature.

In order for string theory to work, there must be six extra spatial dimensions beyond the three that are observable, and theorists believe these extra dimensions are curled up into small spaces. This "compactification" creates what are called moduli fields, which describe the size and shape of the compact dimensions at each point in space-time, according to Price.

Moduli fields generate forces with strengths comparable to gravity, and according to recent predictions might be detected on length scales of about one-tenth of a millimeter.

"If these forces exist, we now know they have to be at even smaller distances than we have measured here," said Price. "However, these results don’t mean that the theories are wrong. Researchers will just have to measure at even shorter distances and with higher sensitivity."

The experiment uses two thin tungsten reeds. One of them is moved back and forth so that the gap between the two reeds varies at a frequency of 1,000 cycles per second, according to Price.

Motions caused by forces on the second reed are detected with highly sensitive electronics. The experiment can detect forces as small as a femto-newton, or about one-billionth of the weight of a grain of sand, he said.

Price said he will continue conducting experiments to try to measure even shorter distances next.


Contact: John Price, 303-492-2484
john.price@colorado.edu

Joshua Long, 505-664-0061
josh.long@lanl.gov

Greg Swenson, 303-492-3113


John Price | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>