Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers conduct most sensitive search for new forces

27.02.2003


University of Colorado at Boulder researchers have conducted the most sensitive search to date for gravitational-strength forces between masses separated by only twice the diameter of a human hair, but they have observed no new forces.



The results rule out a substantial portion of parameter space for new forces with a range between one-tenth and one-hundredth of a millimeter, where theoretical physicists using string theory have proposed that "moduli forces" might be detected, according to the researchers.

In string theory, which is considered the most promising approach to the long-sought unified description of all known forces and matter, everything in the universe is proposed to be composed of tiny loops of vibrating strings.


"Our results represent the most sensitive search for new forces at this length," said lead author Joshua Long, a former postdoctoral researcher in the lab of CU-Boulder physics Professor John Price.

Long now works at the Los Alamos Neutron Science Center in Los Alamos, N.M.

A paper on the subject by Long, Price, Allison Churnside, Eric Gulbis and Michael Varney of CU-Boulder will appear in the Feb. 27 issue of the journal Nature.

In order for string theory to work, there must be six extra spatial dimensions beyond the three that are observable, and theorists believe these extra dimensions are curled up into small spaces. This "compactification" creates what are called moduli fields, which describe the size and shape of the compact dimensions at each point in space-time, according to Price.

Moduli fields generate forces with strengths comparable to gravity, and according to recent predictions might be detected on length scales of about one-tenth of a millimeter.

"If these forces exist, we now know they have to be at even smaller distances than we have measured here," said Price. "However, these results don’t mean that the theories are wrong. Researchers will just have to measure at even shorter distances and with higher sensitivity."

The experiment uses two thin tungsten reeds. One of them is moved back and forth so that the gap between the two reeds varies at a frequency of 1,000 cycles per second, according to Price.

Motions caused by forces on the second reed are detected with highly sensitive electronics. The experiment can detect forces as small as a femto-newton, or about one-billionth of the weight of a grain of sand, he said.

Price said he will continue conducting experiments to try to measure even shorter distances next.


Contact: John Price, 303-492-2484
john.price@colorado.edu

Joshua Long, 505-664-0061
josh.long@lanl.gov

Greg Swenson, 303-492-3113


John Price | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>