Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientist looks at less to find out more about quantum materials


Physics gets strange when matter gets small. Take electrons orbiting the nucleus of an atom, for example. If they did so with the same dynamics by which planets orbit the sun, classical physics predicts the electrons would spiral toward the nucleus and crash into it in a fraction of a second. But that doesn’t happen.

At very low temperatures, classical physics fails to explain phenomena at tiny scales. This is when quantum mechanics kicks in. Scientists are now chilling materials to near absolute zero - so cold that molecules don’t move enough to shiver - to study the behavior of electrons in the smallest discrete building blocks of matter, such as single atoms or complex molecules. Then they are looking at those materials in reduced dimensions, which confine the flow of electrons, to study novel quantum states.

’’3-D is not very interesting because there are no surprises,’’ says Stanford Professor Aharon Kapitulnik, who conducts research in the departments of Applied Physics and Physics. ’’Usually you get new physics when you impose confinement.’’ On Feb. 15 in Denver, Kapitulnik will speak at the annual meeting of the American Association for the Advancement of Science about superconductors, insulators and other novel quantum states in artificially grown materials. Such materials may someday find application in electronic devices, transportation systems and more.

Surprisingly, Kapitulnik and his colleagues are finding out more by looking at less. As the temperature approaches absolute zero, they’re learning, for example, how electronic materials can change their character, turning from conductors and insulators into their electrical opposites, or even ending up as superconductors. At such low temperatures, these changes are governed by quantum mechanics rather than classical thermodynamics and are thus called ’’quantum phase transitions.’’

’’This is physics that is going to apply to future work - quantum computers and nanotechnology,’’ says Kapitulnik. ’’In general, devices that are going to be used in future technologies are believed to be devices of reduced dimensionality.’’

To study phase transitions of electronic materials at their quantum limits, Kapitulnik says he constrains the materials ’’from the point of view of the electron’’ and cools the system to a very low temperature.

In the three-dimensional world of length, width and height, the rules are well established for a solid in which electrons flow like a liquid: that ’’electron fluid material’’ can be either a superconductor (material with no resistance to electric flow), metal (material with some resistance, but not enough to stop current from flowing) or insulator (material with resistance so high that no current can flow), depending on the nature of the interactions in that material.

But, according to old physics, the same isn’t true in two or fewer dimensions, where only superconductor-to-insulator and insulator-to-superconductor transitions are supposed to be possible. For example, a thin film, where electrons can travel in dimensions of length and width but not height, can be either a superconductor or an insulator. But it can’t be a metal, according to old theory. ’’This is a pure quantum mechanical consequence of the theory of localization and interactions of electronic systems,’’ Kapitulnik explains. The theory says scattering from impurities and strong electron-electron interaction cause the electronic wave function to localize. ’’It has been the paradigm for understanding electronic systems in two dimensions for more than two decades.’’

But Kapitulnik disagrees with this paradigm, suggesting that the theory of how electrons behave in two dimensions - how they interact in the presence of disorder - is not fully understood. By applying a magnetic field to a superconductor, he can force electrons to behave in a way that turns the material into its electronic opposite: though the material partially maintains some of its superconducting nature, it turns into an unusual insulator. And his pioneering experiments over the past 10 years have shown that such systems can exist in a continuum of in-between states as novel metals.

Kapitulnik’s approach is to understand a fundamental question in physics - how do electrons move through materials at their quantum limits, chilled to absolute zero, when they’re in contact with systems that can dissipate energy? ’’This kind of situation is not very well understood,’’ Kapitulnik says.

Getting small

How are devices of reduced dimensionality produced? To make films as thin as a few layers of atoms, Kapitulnik uses evaporation techniques. To pattern the thin films into small structures of 10 or so nanometers, he employs lithography in the Stanford Nanofabrication Facility. The structures can be left as two-dimensional sheets or further confined to one or zero dimensions.

Alternatively, scientists can study superconducting materials found in nature to see which systems are stable, and then create superconducting crystals in the lab for their experiments. The crystals sandwich high-temperature superconductors, such as copper-oxygen compounds, between other materials. By looking at just one superconducting layer in a three-dimensional crystal, Kapitulnik can study superconductors in two dimensions.

Today’s transistors are basically two-dimensional systems, Kapitulnik says, but this is changing rapidly as smaller transistors are used in higher-density integrated systems. Restricting the flow of electrons to even fewer dimensions, carbon nanotubes confine electrons in one dimension, and atoms and molecules confine electrons in zero dimensions.

’’If you would think about making a transistor based on a single molecule, it’s going to be a transistor in the zero-dimensional limit because the electron is confined in all directions,’’ he says. Another zero-dimensional system is the quantum dot - a box that holds a discrete number of electrons. A change in voltage causes electrons to be either released or held. Many technologists believe such devices will be the building blocks of future quantum computers.

Also speaking in the AAAS session are Gabriel Aeppli of NEC Research Institute (quantum phase transition in magnetic systems); Immanuel Bloch of Ludwig-Maximilians-Universität (quantum lattices), Matthew P. A. Fisher of the University of California-Santa Barbara (theory of exotic phases of quantum materials) and Subir Sachdev of Yale (general theory of quantum phase transitions).

CONTACT: Dawn Levy, News Service: 650-725-1944,

COMMENT: Aharon Kapitulnik, Applied Physics: 650-723-3847,

Dawn Levy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

More VideoLinks >>>