Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence for dark energy in the universe

11.11.2002


An international team of astronomers, led by scientists at the University of Manchester have produced new evidence that most of the energy in the Universe is in the form of the mysterious "Dark Energy". The new evidence comes from a 10-year census of the sky for examples of gravitational lenses, which are seen when a galaxy bends the light from a distant quasar to form several images of the same quasar. Linking the number of lenses they found with the latest information on the numbers of galaxies, the scientists have been able to infer that most of the energy in the Universe is likely to be in an invisible, and presently unknown, form.



Dark Energy is closely related to the idea of a Cosmological Constant introduced by Einstein over 80 years ago, but most astronomers, including Einstein himself, have always strongly doubted its reality. However, in the past 5 years several independent groups of astronomers have amassed evidence suggesting that Dark Energy exists and could well dominate the total energy of the Universe.

Dark Energy only affects the properties of the Universe over very large distances. As a result, the observations which are sensitive to its presence, in particular studies of exploding stars in distant galaxies, are all close to the limit of current capabilities. Astronomers have therefore been keen to exploit many different tests and Dr. Ian Browne makes the point that "the new gravitational lens test is based on completely different physical arguments to the previous ones and so provides independent evidence in support of Dark Energy".


When a quasar is gravitationally lensed by an intervening galaxy two or more images of the quasar are produced but they are hard to recognise as the images are less than one thousandth of a degree apart. The team therefore employed several of the world`s most powerful radio telescope arrays to make radio pictures of thousands of distant quasars. Professor Peter Wilkinson points out that "we chose to use radio telescopes for our survey since they can pick out details many times finer than optical ones, even the Hubble Space Telescope". The census showed that about one out of every 700 distant quasars is lensed by a foreground galaxy.

To calculate the fraction of the energy in the Universe which is Dark Energy Manchester`s Dr. Kyu-Hyun Chae combined the gravitational lens statistics with the latest results on the numbers and types of galaxies in the Universe made with optical telescopes. The result which emerged is that around two thirds of the Universe`s energy appears to be Dark Energy. The remaining third is made up of Dark Matter, whose form is presently unknown, and "ordinary" matter which makes up the stars and planets. For both of these forms of matter gravity acts as normal and attracts. In contrast Dark Energy has long-range anti-gravity properties and now appears to be causing the expansion of the universe to accelerate, rather than slow down as would be expected if gravity was the dominant force. While astronomers have no idea about what Dark Energy might be, these new results add to their growing confidence that it is real.

Ian Browne | alfa
Further information:
http://www.jb.man.ac.uk/research/gravlens/class/PRL51301.pdf
http://supernova.lbl.gov/
http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>