Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First controlled production of atomic antimatter

19.09.2002


Physicists have just achieved the world’s first controlled production of anti-hydrogen atoms, the crucial first step towards precision studies of its properties.


This achievement has opened up the potential to cool, trap and study anti-atoms.

A team from the University of Wales - Swansea, led by Professor Michael Charlton, played a key role in this major breakthrough as part of an international consortium, ATHENA. The Swindon based Engineering and Physical Sciences Research Council provided funding for the Swansea team of £1.2M over the past 6 years.

“This is a milestone that has opened up new horizons, to enable scientists to study symmetry in nature and explore the fundamental laws of physics which govern the universe, said Prof Charlton. “We are also asking the related question ‘where has all the antimatter gone?’ Today our Universe appears to consist entirely of matter: but we know that equal amounts of matter and antimatter were created in the Big Bang.”



The first step in producing anti-atoms is to confine positive and negative antiparticles in traps at very low temperature. Then they are slowly allowed to react in ultra-high vacuum, which is essential, as the antiparticles will annihilate when they meet normal matter. The result of the interaction is the first and simplest of anti-atoms, anti-hydrogen.

The breakthrough is timely as it coincides with the centenary of the birth of Paul Dirac, who first predicted in 1930, that every particle has an equivalent antiparticle. The British physicists at Swansea played a vital role in the project by making the trap for the positively charged antiparticles, known as positrons.

Professor Charlton acknowledges the support he has received for this research, “EPSRC took a chance in funding this highly speculative project in 1996. This acted as a catalyst, which persuaded other countries to contribute to the ATHENA consortium.”

Jane Reck | alfa

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>