Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Makes First Trench in Science Preserve

19.06.2008
NASA's Phoenix Mars Lander began digging in an area called "Wonderland" early Tuesday, taking its first scoop of soil from a polygonal surface feature within the "national park" region that mission scientists have been preserving for science.

The lander's Robotic Arm created the new test trench called "Snow White" on June 17, the 22nd Martian day, or sol, after the Phoenix spacecraft landed on May 25.

Newly planned science activities will resume no earlier than Sol 24 as engineers look into how the spacecraft is handling larger than expected amounts of data.

During Tuesday?s dig, the arm didn't reach the hard white material, possibly ice, that Phoenix exposed previously in the first trench it dug into the Martian soil.

That's just what scientists both expected and wanted. The Snow White trench is near the center of a relatively flat hummock, or polygon, named "Cheshire Cat,"

where scientists predict there will be more soil layers or thicker soil above possible white material.

The Snow White trench is about two centimeters deep (about three-quarters of an
inch) and 30 centimeters long (about a foot). The Phoenix team plans at least one more day of digging deeper into the Snow White trench.

They will study soil structure in the Snow White trench to decide at what depths they will collect samples from a future trench planned for the center of the polygon.

Meanwhile, the Thermal and Evolved-Gas Analyzer (TEGA) instrument continues its ongoing experiment in the first of its eight ovens.

TEGA has eight separate tiny ovens to bake and sniff the soil to look for volatile ingredients, such as water. The baking is performed at three different temperature ranges.

The Phoenix mission is led by Peter Smith of the University of Arizona with project management at JPL and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory, Pasadena, Calif.
(818-354-6278; guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters, Washington (202-358-1726; dwayne.c.brown@nasa.gov)

Sara Hammond, University of Arizona, Tucson (520-626-1974; shammond@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>