Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon chips for optical quantum technologies

31.03.2008
A team of physicists and engineers has demonstrated exquisite control of single particles of light – photons – on a silicon chip to make a major advance towards the long sought after goal of a super-powerful quantum computer.

Dr Jeremy O’Brien, his PhD student Alberto Politi, and their colleagues at Bristol University have demonstrated the world’s smallest optical controlled-NOT gate – the building block of a quantum computer.

The team were able to fabricate their controlled-NOT gate from silica wave-guides on a silicon chip, resulting in a miniaturised device and high-performance operation.

“This is a crucial step towards a future optical quantum computer, as well as other quantum technologies based on photons,” said Dr O’Brien.

The team reports its results in the March 27 2008 Science Express – the advanced online publication of the journal Science.

Quantum technologies with photons

Quantum technologies aim to exploit the unique properties of quantum mechanics, the physics theory that explains how the world works at very small scales.

For example a quantum computer relies on the fact that quantum particles, such as photons, can exist in a “superposition” of two states at the same time – in stark contrast to the transistors in a PC which can only be in the state “0” or “1”.

Photons are an excellent choice for quantum technologies because they are relatively noise free; information can be moved around quickly – at the speed of light; and manipulating single photons is easy.

Making two photons “talk” to each other to realise the all-important controlled-NOT gate is much harder, but Dr O’Brien and his colleagues at the University of Queensland demonstrated this back in 2003 [Nature 426, 264].

Photons must also “talk” to each other to realise the ultra-precise measurements that harness the laws of quantum mechanics – quantum metrology.

Last year Dr O’Brien and his collaborator Professor Takeuchi and co-workers at Hokkaido University reported such a quantum metrology measurement with four photons [Science 316, 726].

Silica-on-silicon wave-guide quantum circuits

“Despite these and other impressive demonstrations, quantum optical circuits have typically relied on large optical elements with photons propagating in air, and consuming a square metre of optical table. This has made them hard to build and difficult to scale up,” said Alberto Politi.

“For the last several years the Centre for Quantum Photonics has been working towards building controlled-NOT gates and other important quantum circuits on a chip to solve these problems,” added Dr O’Brien.

The team’s chips, fabricated at CIP Technologies, have dimensions measured in millimetres.

This impressive miniaturisation was permitted thanks to the silica-on-silicon technology used in commercial devices for modern optical telecommunications, which guides light on a chip in the same way as in optical fibres.

The team generated pairs of photons which each encoded a quantum bit or qubit of information. They coupled these photons into and out of the controlled-NOT chip using optical fibres. By measuring the output of the device they confirmed high-fidelity operation.

In the experimental characterisation of the quantum chips the researchers also proved that one of the strangest phenomena of the quantum world, namely “quantum entanglement”, was achieved on-chip. Quantum entanglement of two particles means that the state of either of the particles is not defined, but only their collective state.

This on-chip entanglement has important applications in quantum metrology.

“As well as quantum computing and quantum metrology, on-chip photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations,” said Alberto Politi.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>