Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for dark matter in a mine, with the world's best detectors

03.03.2008
A half-mile down in an old iron ore mine in Minnesota, incredibly sensitive detectors have been waiting for a particle of dark matter, an invisible substance that may form the skeleton of galaxies, to make itself known.

A consortium of research scientists, including Stanford physicist Blas Cabrera, anticipated the detection of a predicted-but-undiscovered dark particle known as a weakly interacting massive particle, or WIMP. The hope was that several WIMPs would travel through space and a half-mile of Earth to plunk themselves into the nuclei of germanium atoms in the detectors, each collision creating a vibration and a tiny puff of heat that would signal the WIMP's existence.

WIMPs are leading candidates for dark matter, the unseen stuff that accounts for 85 percent of the entire mass of the universe. Billions of WIMPs may be passing unnoticed through the bodies of humans every second.

The Cryogenic Dark Matter Search was somewhat like waiting for a phone call from the early moments of the universe, when dark matter was formed. But in this case, the phone never rang. The detectors in the clean room at the bottom of the mine, cooled within a whisper of absolute zero, recorded no WIMPS. Scientists call that a "null result," but it is still valuable, Cabrera said.

By building the world's most sensitive and accurate WIMP detectors—a feat comparable to building the best telescope to search the skies—the researchers can now relay the word to other scientists that detectors must be built bigger if they are to have a fighting chance of finding the elusive WIMP.

So the Cryogenic Dark Matter Search, which started out in an underground tunnel at Stanford before moving to the Soudan mine in Minnesota, will next move to a deeper site at Snolab in Canada. The detectors will grow from 3.7 kilos of germanium to 25 kilos.

With a larger detector, as with a wider telescope, "You will be able to see things you've never been able to see before," Cabrera said.

Institutions participating in the Cryogenic Dark Matter Search, in addition to Stanford, are Case Western Reserve University, Fermi National Accelerator Laboratory, Lawrence Berkeley National Laboratory, Massachusetts Institute of Technology, National Institute of Standards and Technology, Princeton University, Queens University, Santa Clara University, Syracuse University, UC-Berkeley, UC-Santa Barbara, University of Colorado at Denver, University of Florida and University of Minnesota.

Blas Cabrera | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>