Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for dark matter in a mine, with the world's best detectors

03.03.2008
A half-mile down in an old iron ore mine in Minnesota, incredibly sensitive detectors have been waiting for a particle of dark matter, an invisible substance that may form the skeleton of galaxies, to make itself known.

A consortium of research scientists, including Stanford physicist Blas Cabrera, anticipated the detection of a predicted-but-undiscovered dark particle known as a weakly interacting massive particle, or WIMP. The hope was that several WIMPs would travel through space and a half-mile of Earth to plunk themselves into the nuclei of germanium atoms in the detectors, each collision creating a vibration and a tiny puff of heat that would signal the WIMP's existence.

WIMPs are leading candidates for dark matter, the unseen stuff that accounts for 85 percent of the entire mass of the universe. Billions of WIMPs may be passing unnoticed through the bodies of humans every second.

The Cryogenic Dark Matter Search was somewhat like waiting for a phone call from the early moments of the universe, when dark matter was formed. But in this case, the phone never rang. The detectors in the clean room at the bottom of the mine, cooled within a whisper of absolute zero, recorded no WIMPS. Scientists call that a "null result," but it is still valuable, Cabrera said.

By building the world's most sensitive and accurate WIMP detectors—a feat comparable to building the best telescope to search the skies—the researchers can now relay the word to other scientists that detectors must be built bigger if they are to have a fighting chance of finding the elusive WIMP.

So the Cryogenic Dark Matter Search, which started out in an underground tunnel at Stanford before moving to the Soudan mine in Minnesota, will next move to a deeper site at Snolab in Canada. The detectors will grow from 3.7 kilos of germanium to 25 kilos.

With a larger detector, as with a wider telescope, "You will be able to see things you've never been able to see before," Cabrera said.

Institutions participating in the Cryogenic Dark Matter Search, in addition to Stanford, are Case Western Reserve University, Fermi National Accelerator Laboratory, Lawrence Berkeley National Laboratory, Massachusetts Institute of Technology, National Institute of Standards and Technology, Princeton University, Queens University, Santa Clara University, Syracuse University, UC-Berkeley, UC-Santa Barbara, University of Colorado at Denver, University of Florida and University of Minnesota.

Blas Cabrera | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>