Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for dark matter in a mine, with the world's best detectors

03.03.2008
A half-mile down in an old iron ore mine in Minnesota, incredibly sensitive detectors have been waiting for a particle of dark matter, an invisible substance that may form the skeleton of galaxies, to make itself known.

A consortium of research scientists, including Stanford physicist Blas Cabrera, anticipated the detection of a predicted-but-undiscovered dark particle known as a weakly interacting massive particle, or WIMP. The hope was that several WIMPs would travel through space and a half-mile of Earth to plunk themselves into the nuclei of germanium atoms in the detectors, each collision creating a vibration and a tiny puff of heat that would signal the WIMP's existence.

WIMPs are leading candidates for dark matter, the unseen stuff that accounts for 85 percent of the entire mass of the universe. Billions of WIMPs may be passing unnoticed through the bodies of humans every second.

The Cryogenic Dark Matter Search was somewhat like waiting for a phone call from the early moments of the universe, when dark matter was formed. But in this case, the phone never rang. The detectors in the clean room at the bottom of the mine, cooled within a whisper of absolute zero, recorded no WIMPS. Scientists call that a "null result," but it is still valuable, Cabrera said.

By building the world's most sensitive and accurate WIMP detectors—a feat comparable to building the best telescope to search the skies—the researchers can now relay the word to other scientists that detectors must be built bigger if they are to have a fighting chance of finding the elusive WIMP.

So the Cryogenic Dark Matter Search, which started out in an underground tunnel at Stanford before moving to the Soudan mine in Minnesota, will next move to a deeper site at Snolab in Canada. The detectors will grow from 3.7 kilos of germanium to 25 kilos.

With a larger detector, as with a wider telescope, "You will be able to see things you've never been able to see before," Cabrera said.

Institutions participating in the Cryogenic Dark Matter Search, in addition to Stanford, are Case Western Reserve University, Fermi National Accelerator Laboratory, Lawrence Berkeley National Laboratory, Massachusetts Institute of Technology, National Institute of Standards and Technology, Princeton University, Queens University, Santa Clara University, Syracuse University, UC-Berkeley, UC-Santa Barbara, University of Colorado at Denver, University of Florida and University of Minnesota.

Blas Cabrera | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>