Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma-ray cloudbursts shed light on lightning

15.02.2008
High-energy gamma rays from thunderclouds may help us to predict when lightning will strike

A team including researchers at RIKEN’s Discovery Research Institute in Wako and the University of Tokyo has observed a burst of high-energy gamma radiation emerging from a thundercloud over the Sea of Japan (1). The discovery could help to reveal the complex electrical processes that cause lightning.

“Free electrons, originally produced by cosmic rays, can be accelerated by the strong electric fields in thunderclouds,” explains project scientist Harufumi Tsuchiya. “If they reach relativistic energies, they can knock other electrons out of their atoms, causing a ‘runaway electron avalanche’.”

When one of the high-energy electrons is deflected by the nucleus of an atom, it loses energy in the form of gamma rays called Bremsstrahlung—literally ‘braking radiation’. Bursts of these gamma rays have been detected by near-Earth satellites above thunderclouds, and very short bursts are often recorded near the ground. Longer bursts lasting up to a few minutes appear to be very rare events, and physicists are unsure where they come from or what they consist of.

To answer these questions, the researchers built new radiation detectors based on devices on board the Suzaku cosmic x-ray satellite. The detectors were installed on the roof of the Kashiwazaki–Kariwa nuclear power plant in Niigata. On 6 January 2007, during a violent winter thunderstorm, they recorded a large radiation spike lasting over a minute, which could not be attributed to background radiation or electrical noise.

The spectrum of radiation included high-energy gamma rays that could not have been produced by thermal processes—which would require temperatures of billions of degrees Celsius. Therefore the burst must have been caused by Bremsstrahlung processes.

The burst was recorded approximately 70 seconds before a large flash of lightning, leading the researchers to speculate on whether the two events are related. In theory the runaway electrons could produce a large number of slower electrons, leading to electrical imbalance and lightning. “If thunderclouds frequently generate gamma ray bursts prior to lightning discharges, detailed observations of such rays would allow us to predict when lightning will occur,” claims Tsuchiya.

However, more observations are needed to prove such a link. “We believe the burst behaves like a searchlight beam, illuminating only a limited area on the ground,” says Tsuchiya, “so we were probably fortunate that the beam happened to pass over our detector.” To test this hypothesis, the researchers plan to spread several detectors over a large area, so that they might trace the movement of a gamma ray burst.

1. Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/380/image_1349.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>