Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Realization of the building block of a Hund’s metal

08.09.2015

As reported in a recent publication of the journal Nature Nanotechnology a team of experimentalists and theoreticians of the University of Hamburg in cooperation with the University of Bremen, the Radboud University in Nijmegen and the Institute of Physics of the Czech Academy of Sciences have experimentally realized and studied the basic building block of an electron phase named Hund’s metal which is present in some of the high-temperature superconductors.

The electronic properties of solid state materials used in today´s electronic devices are governed by the properties of the electrons in their basic constituents, the atoms. As already realized almost ninety years ago by German physicist Friedrich Hund (1896 - 1997) the occupation of the atomic orbitals with electrons (see Figure), which is governed by their mutual repulsion due to their negative charge, leads to a peculiar ordering of the spin of these electrons which, in layman’s terms, is the sense of rotation of the spinning motion of the electrons: the electrons all tend to spin with the same sense of rotation, a rule of thumb which is called Hund’s rule.


Left panel: Occupation of five electron orbitals (boxes) of an atom with five or six spin up (magenta colored arrows) or spin down (cyan colored arrows) electrons according to Hund’s rules. For adding the sixth electron to the orbitals the energy of UCoulomb has to be paid due to the mutual electrostatic repulsion of the negatively charged electrons. However, if one of the electrons changes its spin from up to down, an energy also has to be paid (JHund).

Center panel: Scanning tunneling microscope image of an iron atom (cone with red tip) and three iron-hydrogen-molecules (cones with yellow tips) on the surface of platinum.

Right panel: The hydrogen of the bottom right iron-hydrogen-molecule has been removed by using the tip of the scanning tunneling microscope as a tool. Figure: University of Hamburg

Since the electron current in electronic devices consists precisely of these electrons hopping from one atom to the neighboring atom, the consolidation of the spinning motion of electrons due to Hund’s rule may have profound consequences for the electronic properties of the device. Metallic materials in which the electron motion is governed by Hund’s rule are called Hund’s metals.

Indeed, theorists have argued that the electrons in a recently heavily studied class of superconductors behave like Hund’s metals. In these materials, the electrons are hopping without any resistance and thus can flow through the material without any loss of energy. So far, the superconducting electron flow does only survive at very low temperatures in these materials, and the corresponding devices therefore need to be cooled down to temperatures which are usually present in outer space only.

The research community is therefore frantically searching for new materials, hopefully showing superconductivity under ambient conditions, which would solve some of the most pressing problems of the current era of information technology. However, for a target-oriented search of such materials, the electron properties of the basic constituents of Hund’s metals need to be understood in detail, and this requirement was lacking so far.

A team of experimentalists and theoreticians of the University of Hamburg in cooperation with the University of Bremen, the Radboud University in Nijmegen and the Institute of Physics of the Czech Academy of Sciences have now experimentally realized such a basic constituent, which they coined Hund’s impurity, by depositing iron-hydrogen-molecules on the surface of platinum (see Figure).

Moreover, they were able to intentionally remove hydrogen from such a Hund’s impurity by using the tip of a scanning tunneling microscope as a tool. The team found that attaching or removing the hydrogen has profound consequences for the electronic properties of the Hund’s impurity which they studied in great detail by comparing the experimental data to cutting edge computer simulations of the system.

In a next step, the researchers hope to be able to couple many Hund’s impurities by moving them closer, again by using the tip of a scanning tunneling microscope as a tool. This would enable a bottom-up assembly of a Hund’s metal and its study hopefully will give relevant insight for the targeted development of novel high-temperature superconducting materials.


Original Publication:

Tuning emergent magnetism in a Hund’s impurity,
A. A. Khajetoorians, M. Valentyuk, M. Steinbrecher, T. Schlenk, A. Shick, J. Kolorenc, A. I. Lichtenstein, T. O. Wehling, R. Wiesendanger and J. Wiebe
Nature Nanotechnology (2015).
DOI: 10.1038/nnano.2015.193

Additional information:
Dr. Jens Wiebe
University of Hamburg
Jungiusstr. 9A
20355 Hamburg

Phone: +49- 40 - 4 28 38 - 32 82
E-mail: jwiebe@physnet.uni-hamburg.de

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de
http://www.nanoscience.de/astonish

Heiko Fuchs | Sonderforschungsbereich 668

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>