Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Realization of the building block of a Hund’s metal

08.09.2015

As reported in a recent publication of the journal Nature Nanotechnology a team of experimentalists and theoreticians of the University of Hamburg in cooperation with the University of Bremen, the Radboud University in Nijmegen and the Institute of Physics of the Czech Academy of Sciences have experimentally realized and studied the basic building block of an electron phase named Hund’s metal which is present in some of the high-temperature superconductors.

The electronic properties of solid state materials used in today´s electronic devices are governed by the properties of the electrons in their basic constituents, the atoms. As already realized almost ninety years ago by German physicist Friedrich Hund (1896 - 1997) the occupation of the atomic orbitals with electrons (see Figure), which is governed by their mutual repulsion due to their negative charge, leads to a peculiar ordering of the spin of these electrons which, in layman’s terms, is the sense of rotation of the spinning motion of the electrons: the electrons all tend to spin with the same sense of rotation, a rule of thumb which is called Hund’s rule.


Left panel: Occupation of five electron orbitals (boxes) of an atom with five or six spin up (magenta colored arrows) or spin down (cyan colored arrows) electrons according to Hund’s rules. For adding the sixth electron to the orbitals the energy of UCoulomb has to be paid due to the mutual electrostatic repulsion of the negatively charged electrons. However, if one of the electrons changes its spin from up to down, an energy also has to be paid (JHund).

Center panel: Scanning tunneling microscope image of an iron atom (cone with red tip) and three iron-hydrogen-molecules (cones with yellow tips) on the surface of platinum.

Right panel: The hydrogen of the bottom right iron-hydrogen-molecule has been removed by using the tip of the scanning tunneling microscope as a tool. Figure: University of Hamburg

Since the electron current in electronic devices consists precisely of these electrons hopping from one atom to the neighboring atom, the consolidation of the spinning motion of electrons due to Hund’s rule may have profound consequences for the electronic properties of the device. Metallic materials in which the electron motion is governed by Hund’s rule are called Hund’s metals.

Indeed, theorists have argued that the electrons in a recently heavily studied class of superconductors behave like Hund’s metals. In these materials, the electrons are hopping without any resistance and thus can flow through the material without any loss of energy. So far, the superconducting electron flow does only survive at very low temperatures in these materials, and the corresponding devices therefore need to be cooled down to temperatures which are usually present in outer space only.

The research community is therefore frantically searching for new materials, hopefully showing superconductivity under ambient conditions, which would solve some of the most pressing problems of the current era of information technology. However, for a target-oriented search of such materials, the electron properties of the basic constituents of Hund’s metals need to be understood in detail, and this requirement was lacking so far.

A team of experimentalists and theoreticians of the University of Hamburg in cooperation with the University of Bremen, the Radboud University in Nijmegen and the Institute of Physics of the Czech Academy of Sciences have now experimentally realized such a basic constituent, which they coined Hund’s impurity, by depositing iron-hydrogen-molecules on the surface of platinum (see Figure).

Moreover, they were able to intentionally remove hydrogen from such a Hund’s impurity by using the tip of a scanning tunneling microscope as a tool. The team found that attaching or removing the hydrogen has profound consequences for the electronic properties of the Hund’s impurity which they studied in great detail by comparing the experimental data to cutting edge computer simulations of the system.

In a next step, the researchers hope to be able to couple many Hund’s impurities by moving them closer, again by using the tip of a scanning tunneling microscope as a tool. This would enable a bottom-up assembly of a Hund’s metal and its study hopefully will give relevant insight for the targeted development of novel high-temperature superconducting materials.


Original Publication:

Tuning emergent magnetism in a Hund’s impurity,
A. A. Khajetoorians, M. Valentyuk, M. Steinbrecher, T. Schlenk, A. Shick, J. Kolorenc, A. I. Lichtenstein, T. O. Wehling, R. Wiesendanger and J. Wiebe
Nature Nanotechnology (2015).
DOI: 10.1038/nnano.2015.193

Additional information:
Dr. Jens Wiebe
University of Hamburg
Jungiusstr. 9A
20355 Hamburg

Phone: +49- 40 - 4 28 38 - 32 82
E-mail: jwiebe@physnet.uni-hamburg.de

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de
http://www.nanoscience.de/astonish

Heiko Fuchs | Sonderforschungsbereich 668

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>