Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulation: A Better Understanding of Magnetism

20.11.2015

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a model that simulates the behaviour of electrons in a solid, which enables the investigation of magnetic properties.


Atoms (shown in green and blue) are held in a trap of laser light (red) in which they can move in one dimension only. The atoms can point either up (green) or down (blue), similar to a needle in a compass. When the atoms do not interact, they can move freely in the trap (top picture); they have no discernible order. When repulsive interactions between the atoms are strong (bottom picture), they arrange themselves in the trap, with each atom pointing in the opposite direction of its neighbour.

The findings of the team led by Prof. Selim Jochim of the Institute for Physics are expected to contribute to a better understanding of the fundamental processes in solids and lead to the development of new types of materials over the long term. The results of their quantum simulation research, conducted with physicists from Hannover and Lund (Sweden), appeared in the journal “Physical Review Letters”.

Magnetism has been known for over 2,000 years, and was used early on to develop the compass, whose needles align themselves with the earth's magnetic field. Nonetheless, the microscopic causes of magnetism were not understood until the development of quantum mechanics at the beginning of the 20th century.

One of the most important discoveries was that electrons in a solid behave like tiny compass needles that align themselves with an external magnetic field and also affect each other. The magnetic properties of a solid depend on how adjacent electrons arrange themselves relative to one another. For instance in ferromagnetic substances such as iron, all electrons point in the same direction. In antiferromagnetism, however, each electron points in the opposite direction of its neighbour.

The Heidelberg physicists used very few atoms, namely four, for their quantum simulation. “Precisely preparing such a small number of atoms is a major technical undertaking. It allows us, however, to control the state of the atoms with extreme precision,” explains Simon Murmann, Prof. Jochim’s doctoral student in charge of the experiments who has just completed his thesis on the subject.

The atoms are held in a laser light trap that allows movement in only one dimension. They are subject to virtually the same physical laws as electrons in a solid, but the physicists are able to precisely control the interactions of the atoms. “Initially, there is no interaction between the atoms. In this state, they can move freely inside the trap without any fixed arrangement. But when we introduce increasing repulsion between the atoms, they can no longer pass one another and end up forming a chain. Each atom in the chain points in the opposite direction of its neighbour, one up and one down. This brings about an antiferromagnetic state,” explains the Heidelberg scientist.

This observation is of great interest to the researchers because antiferromagnetism is connected to physical phenomenon that could lead to far-reaching applications. “Superconductivity, i.e. the lossless conduction of electricity, was observed in antiferromagnetic materials at relatively high temperatures of only minus 135 degrees Celsius,” continues Selim Jochim. “We hope that our experiments will contribute to the understanding of the fundamental processes in solids. One vision is to develop new materials that will remain superconductive even at room temperature”.

For their article published in the “Physical Review Letters”, the authors received the coveted “Editors’ Suggestion” distinction.

Original publication:
S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. Santos, T. Lompe, S. Jochim: Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters (published online on 19 November 2015), doi: 10.1103/PhysRevLett.115.215301

Contact:
Prof. Dr. Selim Jochim
Center for Quantum Dynamics
Institute for Physics
Phone +49 6221 54-19472

jochim@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

Group of Prof. Dr. Selim Jochim – http://ultracold.physi.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>