Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum physics just got less complicated

19.12.2014

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct are different manifestations of the same thing. The result is published 19 December in Nature Communications.

Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one.


Quantum physics says that particles can behave like waves, and vice versa. Researchers have now shown that this 'wave-particle duality' is simply the quantum uncertainty principle in disguise.

Credit: Timothy Yeo / CQT, National University of Singapore

"The connection between uncertainty and wave-particle duality comes out very naturally when you consider them as questions about what information you can gain about a system. Our result highlights the power of thinking about physics from the perspective of information," says Wehner, who is now an Associate Professor at QuTech at the Delft University of Technology in the Netherlands.

The discovery deepens our understanding of quantum physics and could prompt ideas for new applications of wave-particle duality.

Wave-particle duality is the idea that a quantum object can behave like a wave, but that the wave behaviour disappears if you try to locate the object. It's most simply seen in a double slit experiment, where single particles, electrons, say, are fired one by one at a screen containing two narrow slits. The particles pile up behind the slits not in two heaps as classical objects would, but in a stripy pattern like you'd expect for waves interfering. At least this is what happens until you sneak a look at which slit a particle goes through - do that and the interference pattern vanishes.

The quantum uncertainty principle is the idea that it's impossible to know certain pairs of things about a quantum particle at once. For example, the more precisely you know the position of an atom, the less precisely you can know the speed with which it's moving. It's a limit on the fundamental knowability of nature, not a statement on measurement skill. The new work shows that how much you can learn about the wave versus the particle behaviour of a system is constrained in exactly the same way.

Wave-particle duality and uncertainty have been fundamental concepts in quantum physics since the early 1900s. "We were guided by a gut feeling, and only a gut feeling, that there should be a connection," says Coles, who is now a Postdoctoral Fellow at the Institute for Quantum Computing in Waterloo, Canada.

It's possible to write equations that capture how much can be learned about pairs of properties that are affected by the uncertainty principle. Coles, Kaniewski and Wehner are experts in a form of such equations known as 'entropic uncertainty relations', and they discovered that all the maths previously used to describe wave-particle duality could be reformulated in terms of these relations.

"It was like we had discovered the 'Rosetta Stone' that connected two different languages," says Coles. "The literature on wave-particle duality was like hieroglyphics that we could now translate into our native tongue. We had several eureka moments when we finally understood what people had done," he says.

Because the entropic uncertainty relations used in their translation have also been used in proving the security of quantum cryptography - schemes for secure communication using quantum particles - the researchers suggest the work could help inspire new cryptography protocols.

In earlier papers, Wehner and collaborators found connections between the uncertainty principle and other physics, namely quantum 'non-locality' and the second law of thermodynamics. The tantalising next goal for the researchers is to think about how these pieces fit together and what bigger picture that paints of how nature is constructed.

Reference

"Equivalence of wave-particle duality to entropic uncertainty" Nature Communications doi:10.1038/ncomm6814 (2014)

Preprint available at http://arxiv.org/abs/1403.4687

Researcher Contacts

Patrick Coles
Postdoctoral Fellow
Institute for Quantum Computing, University of Waterloo, Canada
Tel: +1 519 8884567 x39066
Email: pcoles@uwaterloo.ca

Stephanie Wehner
Principal Investigator, Centre for Quantum Technologies, National University of Singapore
Associate Professor, QuTech, Delft University of Technology, The Netherlands
Tel: +31 15 27 87746
Email: s.d.c.wehner@tudelft.nl

Jenny Hogan | EurekAlert!

Further reports about: Computing Delft QUANTUM Quantum Technologies Quantum physics Technology Waterloo

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>