Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum-physical Model System

06.04.2017

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment with ultracold atoms.


Schematic representation of the filling process: atoms from the external potential wells (represented by the yellow balls) move to the middle well as indicated by the red arrows.

Illustration: David Fischer

Using computer-assisted methods, Prof. Dr Sandro Wimberger and David Fischer from the Institute for Theoretical Physics discovered physical laws that point to the universal properties of this system. Their results were published in the journal “Annalen der Physik”.

Under certain conditions, small particles follow completely different physical laws than those we are accustomed to. “Observing such quantum-physical phenomena, however, is sometimes difficult and requires working with small and isolated systems and to investigate those.

But perfect isolation from the environment is never possible, so external influences can easily destroy the fragile state of the quantum system,” explains primary author David Fischer, a student of physics at Heidelberg University. For experiments in this field, keeping such disruptions under control is of great interest.

“This control enables us not only to ensure the coherence of the system, but it can also be used selectively to effect special conditions,” emphasises Prof. Wimberger.

Ultracold atoms filled into so-called potential wells have proven to be suitable test objects in many experiments. A special laser configuration is used to generate a barrier that locks the atoms in a small area. If multiple wells are then brought close enough together, the atoms have the ability to “tunnel” from one well into an adjacent one.

They are still trapped in the wells, but can move from one well to another, according to the Heidelberg physicists. The temperature of the atoms, which is only just above absolute zero at -273.15 degrees Celsius, favours this quantum-mechanical behaviour.

In developing their model system, David Fischer and Sandro Wimberger reproduced an experiment carried out at the Technical University of Kaiserslautern. There, the behaviour of cold atoms in a chain of potential wells was investigated. The researchers filled the chain with atoms, emptied the middle well, and watched it refill with atoms from the other wells.

“The results of this study suggest that decoherence, i.e. external interference, plays a critical role in this process. What is unclear is which microscopic processes the quantum system uses to interact with the environment,” says David Fischer.

In their computer-assisted simulation of the refilling process, the two Heidelberg researchers tested various hypotheses and explored which processes actually influenced the behaviour of the model system. Among other things, they noticed that the time required for the refilling process varied based on the system parameters. This duration follows a power law, depending on the decoherence rate specified by the researchers.

“In physics, this is often a sign of a universal behaviour of the system that is valid for all scales, hence simplifying the overall problem,” states Prof. Wimberger.

Original publication:
D. Fischer and S. Wimberger: Models for a multimode bosonic tunneling junction, Ann. Phys. (2017) (published online 13 February 2017), doi: 10.1002/andp.201600327

Contact:
Prof. Dr Sandro Wimberger
Institute for Theoretical Physics
Phone +49 6221 54-9449
s.wimberger@thphys.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: microscopic processes physics power law ultracold atoms

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>