Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum-Memory Imprint discovered in Light Emission

12.08.2014

Physicists at Marburg University assign unexpected experimental results to a quantum memory.

Prior to this work, ideal light sources (such as perfect lasers) were thought to emit as much light as excited in them via pumping.


Semiconductor quantum-dot microring laser emits light whose emission intensity exhibits oscillations due to quantum memory between excitation and light Emission. Pressestelle der Philipps-Universität Marburg/Fachgebiet Theoretische Halbleiterphysik

Physicists from Marburg, Dortmund, St. Petersburg, and Notre Dame, USA, investigated optically pumped quantum-dot lasers and demonstrated that the pumping induces a quantum memory between the pump excitation and the light emission. Beating expectations, this quantum-memory was shown to induce intensity oscillations on top of the expected linear output.

Even more striking, these oscillations could be either suppressed or significantly enhanced via the quantum fluctuations of the pump laser. This breakthrough will be published in the coming issue of the journal Physical Review Letters on 15.08.2014.

The theoretical research team led by Professors Mackillo Kira and Stephan W. Koch from the Philipps-Universität Marburg analyzed the unusual experimental results obtained by the team led by Prof. Manfred Bayer. The experimentalists used laser light to excite quantum dots inside a microcavity and carefully recorded the subsequent light emission.

The first author of this publication, M.Sc. Christian Berger, explains “The input pump laser excites the quantum dot to a higher energy level; afterwards, the excitation returns to the ground state by emitting light, defining the output”.

Surprisingly, the authors found that the output intensity does not scale linearly with the input intensity as expected earlier. Instead, the output power was oscillating around its expected value. They could even show that the oscillations can be completely controlled by the quantum-optical fluctuations of the optical pump, which highlights the significance of this extraordinary discovery.

Mackillo Kira elaborates, “We were thrilled after we verified the quantum-optical control of these oscillations which is a genuine property of our quantum-optical spectroscopy concept”. Manfred Bayer continues, “Based on these findings, we could unambiguously identify the observed oscillations as a genuine quantum-memory effect”. Stephan W. Koch explains the origin of the quantum memory, “The light emission remembers the earlier excitation process via quantum memory – this effect is intimately connected with entanglement, which is one of the manifestations of the fundamental quantum weirdness”.

This work is connected with the ongoing effort to convert quantum-world phenomena to tangible applications. The existence of quantum-memory effects and their quantum-optical control may hold the key to developing lasers whose quantum-optical aspects become completely user defined. Such laser sources would be extremely useful in quantum-information science and in quantum spectroscopy which aims to control quantum processes of complex systems via the quantum aspects of light.

Professors Mackillo Kira and Stephan W. Koch teach semiconductor quantum optics and theoretical semiconductor physics at the Philipps-Universität Marburg. In February, they identified a new quasiparticle, the dropleton, with the help of quantum-optical spectroscopy.

Publication: Christian Berger & al.: Quantum-Memory Effects in the Emission of Quantum-Dot Microcavities, Physical Review Letters 2014.

Further information:
German version of this press release: http://www.uni-marburg.de/aktuelles/news/2014c/quantengedaechtnis

Contact:
Professor Dr. Mackillo Kira
Field: Theoretical Semiconductor Physics
Phone: 06421 2824222
E-Mail: mackillo.kira@physik.uni-marburg.de

Weitere Informationen:

http://www.uni-marburg.de/fb13/research/theoretical-semiconductor-physics/index_...

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Further reports about: Emission fluctuations lasers oscillations pump semiconductor spectroscopy

More articles from Physics and Astronomy:

nachricht Unexpectedly little black-hole monsters rapidly suck up surrounding matter
30.06.2015 | National Institutes of Natural Sciences

nachricht Spintronics Advance Brings Wafer-Scale Quantum Devices Closer to Reality
29.06.2015 | University of Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

Im Focus: Superslippery islands (but then they get stuck)

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Aromatic couple makes new chemical bonds

30.06.2015 | Life Sciences

Extreme makeover: Mankind's unprecedented transformation of Earth

30.06.2015 | Earth Sciences

Large-scale field-effect transistors based on solution-grown organic single crystals are fabricated

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>