Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum-Memory Imprint discovered in Light Emission

12.08.2014

Physicists at Marburg University assign unexpected experimental results to a quantum memory.

Prior to this work, ideal light sources (such as perfect lasers) were thought to emit as much light as excited in them via pumping.


Semiconductor quantum-dot microring laser emits light whose emission intensity exhibits oscillations due to quantum memory between excitation and light Emission. Pressestelle der Philipps-Universität Marburg/Fachgebiet Theoretische Halbleiterphysik

Physicists from Marburg, Dortmund, St. Petersburg, and Notre Dame, USA, investigated optically pumped quantum-dot lasers and demonstrated that the pumping induces a quantum memory between the pump excitation and the light emission. Beating expectations, this quantum-memory was shown to induce intensity oscillations on top of the expected linear output.

Even more striking, these oscillations could be either suppressed or significantly enhanced via the quantum fluctuations of the pump laser. This breakthrough will be published in the coming issue of the journal Physical Review Letters on 15.08.2014.

The theoretical research team led by Professors Mackillo Kira and Stephan W. Koch from the Philipps-Universität Marburg analyzed the unusual experimental results obtained by the team led by Prof. Manfred Bayer. The experimentalists used laser light to excite quantum dots inside a microcavity and carefully recorded the subsequent light emission.

The first author of this publication, M.Sc. Christian Berger, explains “The input pump laser excites the quantum dot to a higher energy level; afterwards, the excitation returns to the ground state by emitting light, defining the output”.

Surprisingly, the authors found that the output intensity does not scale linearly with the input intensity as expected earlier. Instead, the output power was oscillating around its expected value. They could even show that the oscillations can be completely controlled by the quantum-optical fluctuations of the optical pump, which highlights the significance of this extraordinary discovery.

Mackillo Kira elaborates, “We were thrilled after we verified the quantum-optical control of these oscillations which is a genuine property of our quantum-optical spectroscopy concept”. Manfred Bayer continues, “Based on these findings, we could unambiguously identify the observed oscillations as a genuine quantum-memory effect”. Stephan W. Koch explains the origin of the quantum memory, “The light emission remembers the earlier excitation process via quantum memory – this effect is intimately connected with entanglement, which is one of the manifestations of the fundamental quantum weirdness”.

This work is connected with the ongoing effort to convert quantum-world phenomena to tangible applications. The existence of quantum-memory effects and their quantum-optical control may hold the key to developing lasers whose quantum-optical aspects become completely user defined. Such laser sources would be extremely useful in quantum-information science and in quantum spectroscopy which aims to control quantum processes of complex systems via the quantum aspects of light.

Professors Mackillo Kira and Stephan W. Koch teach semiconductor quantum optics and theoretical semiconductor physics at the Philipps-Universität Marburg. In February, they identified a new quasiparticle, the dropleton, with the help of quantum-optical spectroscopy.

Publication: Christian Berger & al.: Quantum-Memory Effects in the Emission of Quantum-Dot Microcavities, Physical Review Letters 2014.

Further information:
German version of this press release: http://www.uni-marburg.de/aktuelles/news/2014c/quantengedaechtnis

Contact:
Professor Dr. Mackillo Kira
Field: Theoretical Semiconductor Physics
Phone: 06421 2824222
E-Mail: mackillo.kira@physik.uni-marburg.de

Weitere Informationen:

http://www.uni-marburg.de/fb13/research/theoretical-semiconductor-physics/index_...

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Further reports about: Emission fluctuations lasers oscillations pump semiconductor spectroscopy

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>