Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quality control of quantum simulators


Scientists of the FU Berlin, the Universidade Federal do Rio de Janeiro, and the MPQ develop a new certification method for photonic quantum simulators.

In the past 20 years, the development of devices that exploit the laws of quantum physics has made impressive progress. New quantum technologies promise a variety of exciting applications, for example in the field of quantum information processing or for the safe encoding of data. Hence, the commercial use of quantum devices has now become feasible.

Graphic: image background: public domain / stamp: ICFO, Spain

There is, however, a severe obstacle to overcome: the lack of practical tools for certifying the functionality of the devices. This prevents the transformation of complex laboratory set-ups into commercial products. Now, an international team of scientists has proposed a new certification method that applies to photonic devices in which light quanta serve as the carriers of quantum information.

This new method, developed by Prof. Dr. Jens Eisert (Freie Universität Berlin), Prof. Dr. Leandro Aolita (Universidade Federal do Rio de Janeiro), Dr. Christian Gogolin, postdoctoral scientist in the Theory Division at MPQ (Garching) and Research Fellow at ICFO (Barcelona), as well as Martin Kliesch (Freie Universität Berlin), is characterized by its high reliability and simplicity (Nature Communications, 18th November 2015, DOI 10.1038/NCOMMS9498).

It is an important step towards exploiting the quantum mechanical behaviour of quantum many-body systems in a controlled way.

Quantum simulation as well as quantum cryptography has become increasingly important in the past years. The ultimate goal of all these efforts is a “general purpose computer”, a device with the power to solve all kinds of different problems, and outperforming any classical computer in terms of speed.

How to achieve this goal remains a question of active research at present. There is, however, a kind of intermediate stage that is now within reach: so-called quantum simulators. By making use of quantum effects, these devices can at least solve certain specific tasks that cannot be treated efficiently with classical methods. They are fast, but not universal.

Quantum optics represents a platform for the implementation of quantum simulators. Here the quantum mechanical properties of light quanta (so-called photons), such as entanglement and superposition, are being used. But how can one make sure that machines that rely on the use of microscopic particles work the way they are supposed to? “Certification is very difficult, in particular in case of non-universal quantum computers,” Dr. Christian Gogolin explains.

“This is, because quantum simulators are limited in their capability to perform calculations. So you cannot run any kind of certification program. Instead, the program has to be tailored according to the specific properties of the quantum simulator.”

The problem of certification can be understood in terms of a game in which one very powerful player – let’s call him Merlin – challenges a much less powerful opponent, let’s call him Arthur. Merlin claims to be in possession of a quantum simulator, but Arthur is doubtful.

He wants to have a proof that this is true, and that Merlin’s quantum simulator is indeed capable of solving problems that exceed his (Arthur’s) own abilities. The goal is to find a way for Arthur that allows him – despite of his limited resources – to check whether Merlin owns a functioning quantum simulator.

In their publication the scientists propose a test that offers this kind of certification for a variety of optical quantum simulators. For one, Arthur has to be able to detect and characterize single photons. Second, he has to use a classical computer in order to check Merlin’s solutions and make sure that his quantum simulator delivers the correct values. After a calculable number of “rounds” in this game Arthur will know with a certainty of say 99.9 % whether Merlin is able to prepare a selected quantum state to a selected precision.

The experimental techniques that are available today provide a surprisingly large number of potential applications of quantum effects. That makes it all the more important to prove that the methods live up to their claims. “Up to now, most of the effort went into the realization of quantum technologies whereas certification received hardly any attention”, Prof. Jens Eisert elaborates.

“Now we have reached a point where this bottleneck hinders further experimental progress. The method we propose is rather simple, yet very reliable. Though it is tailored for optical devices, it also contributes to finding a general solution for the problem of certification.” Olivia Meyer-Streng

Orginal publication:
Leandro Aolita, Christian Gogolin, Martin Kliesch, and Jens Eisert
Reliable quantum certification for photonic quantum technologies
Nature Communications, 18 November 2015, DOI 10.1038/NCOMMS9498

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU München and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 -705/-736 / Fax: -336

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Phone: +34 935 54 22 37

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>