Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality control of quantum simulators

18.11.2015

Scientists of the FU Berlin, the Universidade Federal do Rio de Janeiro, and the MPQ develop a new certification method for photonic quantum simulators.

In the past 20 years, the development of devices that exploit the laws of quantum physics has made impressive progress. New quantum technologies promise a variety of exciting applications, for example in the field of quantum information processing or for the safe encoding of data. Hence, the commercial use of quantum devices has now become feasible.


Graphic: image background: public domain / stamp: ICFO, Spain

There is, however, a severe obstacle to overcome: the lack of practical tools for certifying the functionality of the devices. This prevents the transformation of complex laboratory set-ups into commercial products. Now, an international team of scientists has proposed a new certification method that applies to photonic devices in which light quanta serve as the carriers of quantum information.

This new method, developed by Prof. Dr. Jens Eisert (Freie Universität Berlin), Prof. Dr. Leandro Aolita (Universidade Federal do Rio de Janeiro), Dr. Christian Gogolin, postdoctoral scientist in the Theory Division at MPQ (Garching) and Research Fellow at ICFO (Barcelona), as well as Martin Kliesch (Freie Universität Berlin), is characterized by its high reliability and simplicity (Nature Communications, 18th November 2015, DOI 10.1038/NCOMMS9498).

It is an important step towards exploiting the quantum mechanical behaviour of quantum many-body systems in a controlled way.

Quantum simulation as well as quantum cryptography has become increasingly important in the past years. The ultimate goal of all these efforts is a “general purpose computer”, a device with the power to solve all kinds of different problems, and outperforming any classical computer in terms of speed.

How to achieve this goal remains a question of active research at present. There is, however, a kind of intermediate stage that is now within reach: so-called quantum simulators. By making use of quantum effects, these devices can at least solve certain specific tasks that cannot be treated efficiently with classical methods. They are fast, but not universal.

Quantum optics represents a platform for the implementation of quantum simulators. Here the quantum mechanical properties of light quanta (so-called photons), such as entanglement and superposition, are being used. But how can one make sure that machines that rely on the use of microscopic particles work the way they are supposed to? “Certification is very difficult, in particular in case of non-universal quantum computers,” Dr. Christian Gogolin explains.

“This is, because quantum simulators are limited in their capability to perform calculations. So you cannot run any kind of certification program. Instead, the program has to be tailored according to the specific properties of the quantum simulator.”

The problem of certification can be understood in terms of a game in which one very powerful player – let’s call him Merlin – challenges a much less powerful opponent, let’s call him Arthur. Merlin claims to be in possession of a quantum simulator, but Arthur is doubtful.

He wants to have a proof that this is true, and that Merlin’s quantum simulator is indeed capable of solving problems that exceed his (Arthur’s) own abilities. The goal is to find a way for Arthur that allows him – despite of his limited resources – to check whether Merlin owns a functioning quantum simulator.

In their publication the scientists propose a test that offers this kind of certification for a variety of optical quantum simulators. For one, Arthur has to be able to detect and characterize single photons. Second, he has to use a classical computer in order to check Merlin’s solutions and make sure that his quantum simulator delivers the correct values. After a calculable number of “rounds” in this game Arthur will know with a certainty of say 99.9 % whether Merlin is able to prepare a selected quantum state to a selected precision.

The experimental techniques that are available today provide a surprisingly large number of potential applications of quantum effects. That makes it all the more important to prove that the methods live up to their claims. “Up to now, most of the effort went into the realization of quantum technologies whereas certification received hardly any attention”, Prof. Jens Eisert elaborates.

“Now we have reached a point where this bottleneck hinders further experimental progress. The method we propose is rather simple, yet very reliable. Though it is tailored for optical devices, it also contributes to finding a general solution for the problem of certification.” Olivia Meyer-Streng

Orginal publication:
Leandro Aolita, Christian Gogolin, Martin Kliesch, and Jens Eisert
Reliable quantum certification for photonic quantum technologies
Nature Communications, 18 November 2015, DOI 10.1038/NCOMMS9498

Contact:
Prof. Dr. J. Ignacio Cirac
Honorary Professor TU München and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 -705/-736 / Fax: -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Phone: +34 935 54 22 37
E-mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>