Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection from the sun: Scientists show importance of magnetic field for evolution of life

17.03.2016

Nearly four billion years ago, life arose on Earth. Life appeared because our planet had a rocky surface, liquid water and a blanketing atmosphere. But life thrived thanks to another necessary ingredient: the presence of a protective magnetic field. A new study with the participation of the University of Göttingen shows that a magnetic field plays a key role in making a planet conducive to life. The results were published in The Astrophysical Journal Letters.

The scientists studied Kappa Ceti, a star located 30 light years away in the constellation Cetus, the Whale. Kappa Ceti is remarkably similar to our Sun, but younger. It is magnetically very active and its surface is blotched with many giant starspots, like sunspots, but larger and more numerous.


Computer model of the magnetic field lines of the star Kappa Ceti as gray lines looping out from the star’s surface.

Credit: Do Nascimento et al.


Artist’s illustration of the young Sun-like star Kappa Ceti, blotched with large starspots, which is a sign of its high level of magnetic activity.

Credit: M. Weiss/CfA

It also propels a steady stream of plasma or ionized gases out into space, a stellar wind that is 50 times stronger than our Sun’s solar wind. Kappa Ceti is between 400 and 600 million years old and its age roughly corresponds to the time when life first appeared on Earth.

“Studying Kappa Ceti can give us insight into the early history of our own solar system,” explains co-author Dr. Sandra Jeffers from Göttingen University’s Institute for Astrophysics.

Without the protection of a magnetic field, such a fierce stellar wind would batter the atmosphere of any planet in the habitable zone – a fate that in our solar system the planet Mars suffered.

In their study, the scientists modeled the strong stellar wind of Kappa Ceti and its effect on a young Earth. “The early Earth’s magnetic field is expected to have been about as strong as it is today, or slightly weaker,” says Dr. Jeffers.

“Depending on the assumed strength, we found that the resulting protected region or magnetosphere of Earth would be about one-third to half as large as it is today. The early Earth didn’t have as much protection as it has now, but it had enough in order to preserve the necessary conditions for life.”

Kappa Ceti also shows evidence of superflares, enormous eruptions that release 10 to 100 million times more energy than the largest flares ever observed on our Sun. Flares that energetic can strip a planet’s atmosphere. By studying Kappa Ceti, the researchers hope to learn how frequently it produces superflares, and therefore how often our Sun might have erupted in its youth.

Original publication: J.-D. Do Nascimento, Jr. et al. Magnetic field and wind of Kappa Ceti: Towards the planetary habitability of the young Sun when life arose on Earth. The Astrophysical Journal Letters 2016. http://arxiv.org/pdf/1603.03937v1.pdf.

Contact:
Dr. Sandra Jeffers
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, Phone +49 551 39-13810
Email: jeffers@astro.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/216896.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>