Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Princeton and General Atomics Scientists Make Breakthrough in Understanding How to Control Intense Heat Bursts in Fusion Experiments


Researchers from General Atomics and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) have made a major breakthrough in understanding how potentially damaging heat bursts inside a fusion reactor can be controlled.

Scientists performed the experiments on the DIII-D National Fusion Facility, a tokamak operated by General Atomics in San Diego. The findings represent a key step in predicting how to control heat bursts in future fusion facilities including ITER, an international experiment under construction in France to demonstrate the feasibility of fusion energy. This work is supported by the DOE Office of Science.

General Atomics

Computer simulation of a cross-section of a DIII-D plasma responding to tiny magnetic fields. The left image models the response that suppressed the ELMs while the right image shows a response that was ineffective.

The studies build upon previous work pioneered on DIII-D showing that these intense heat bursts – called “ELMs” for short – could be suppressed with tiny magnetic fields. These tiny fields cause the edge of the plasma to smoothly release heat, thereby avoiding the damaging heat bursts.

But until now, scientists did not understand how these fields worked. “Many mysteries surrounded how the plasma distorts to suppress these heat bursts,” said Carlos Paz-Soldan, a General Atomics scientist and lead author of the first of the two papers that report the seminal findings back-to-back in the same issue of Physical Review Letters this week.

Paz-Soldan and a multi-institutional team of researchers found that tiny magnetic fields applied to the device can create two distinct kinds of response, rather than just one response as previously thought.

The new response produces a ripple in the magnetic field near the plasma edge, allowing more heat to leak out at just the right rate to avert the intense heat bursts. Researchers applied the magnetic fields by running electrical current through coils around the plasma. Pickup coils then detected the plasma response, much as the microphone on a guitar picks up string vibrations.

The second result, led by PPPL scientist Raffi Nazikian, who heads the PPPL research team at DIII-D, identified the changes in the plasma that lead to the suppression of the large edge heat bursts or ELMs. The team found clear evidence that the plasma was deforming in just the way needed to allow the heat to slowly leak out.

The measured magnetic distortions of the plasma edge indicated that the magnetic field was gently tearing in a narrow layer, a key prediction for how heat bursts can be prevented. “The configuration changes suddenly when the plasma is tapped in a certain way,” Nazikian said, “and it is this response that suppresses the ELMs.”

The work involved a multi-institutional team of researchers who for years have been working toward an understanding of this process. These researchers included people from General Atomics, PPPL, Oak Ridge National Laboratory, Columbia University, Australian National University, the University of California-San Diego, the University of Wisconsin-Madison, and several others.

The new results suggest further possibilities for tuning the magnetic fields to make ELM-control easier. These findings point the way to overcoming a persistent barrier to sustained fusion reactions. “The identification of the physical processes that lead to ELM suppression when applying a small 3D magnetic field to the inherently 2D tokamak field provides new confidence that such a technique can be optimized in eliminating ELMs in ITER and future fusion devices,” said Mickey Wade, the DIII-D program director.

The results further highlight the value of the long-term multi-institutional collaboration between General Atomics, PPPL and other institutions in DIII-D research. This collaboration, said Wade, “was instrumental in developing the best experiment possible, realizing the significance of the results, and carrying out the analysis that led to publication of these important findings.”

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

General Atomics has participated in fusion research for over 50 years and presently operates the DIII-D National Fusion Facility for the U.S. Department of Energy Office of Science with a mission “to provide the physics basis for the optimization of the tokamak approach to fusion energy production.” The General Atomics group of companies is a world renowned leader in developing high-technology systems ranging from the nuclear fuel cycle to electromagnetic systems; remotely operated surveillance aircraft; airborne sensors; advanced electronic, wireless, and laser technologies; and biofuels.

Contact Information
John Greenwald
Science Editor
Phone: 609-243-2672

John Greenwald | newswise
Further information:

Further reports about: Atomics Laboratory PPPL Plasma fusion energy heat magnetic field magnetic fields physics

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>