Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL physicists use computers to uncover mechanism that stabilizes plasma within tokamaks

18.11.2015

A team of physicists led by Stephen Jardin of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a "sawtooth cycle" and can cause instabilities within the plasma's core. The results have been published online in Physical Review Letters. The research was supported by the DOE Office of Science.

The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory.


A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once.

Credit: Stephen Jardin, PPPL

Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, the team found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak. The swirling plasma acts like a dynamo -- a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began.

... more about:
»Energy »ITER »Plasma »magnetic field »pressure »voltage

Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

This dynamo behavior arises only under certain conditions. Both the electrical current running through the plasma and the pressure that the plasma's electrons and ions exert on their neighbors must be in a range that is "not too large and not too small," said Jardin. In addition, the speed at which the conditions for the fusion reaction are established must be "not too fast and not too slow."

Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. "We don't have to do anything else from the outside," he noted. "It's something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself."

During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. "These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists," said Jardin. The persistence produces the "voltage in the center of the discharge that keeps the plasma current from peaking."

Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and on the ASDEX Upgrade in Garching, Germany. They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power. "Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER," said Jardin. "That will be the focus of our research in the near future."

Learning how to create these conditions will be particularly important for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov
415-243-3317

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

Further reports about: Energy ITER Plasma magnetic field pressure voltage

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>