Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists observe motion of skyrmions

04.02.2015

Magnetic whirls are candidates for future data storage and information processing

Small magnetic whirls may revolutionize future data storage and information processing if they can be moved rapidly and reliably in small structures. A team of scientists of Johannes Gutenberg University Mainz (JGU) and TU Berlin, together with colleagues from the Netherlands and Switzerland, has now been able to investigate the dynamics of these whirls experimentally.


Magnetic disc with a whirl: the magnetization is represented by the arrows. The curved gold wire is used to create a magnetic-field pulse.

source: Benjamin Krüger

The skyrmions, as these tiny whirls are called after the British nuclear physicist Tony Skyrme, follow a complex trajectory and even continue to move after the external excitation is switched off. This effect will be especially important when one wants to move a skyrmion to a selected position as necessary in a future memory device. This research was published in the journal Nature Physics with a student of the Graduate School of Excellence Materials Science in Mainz (MAINZ) as the first author.

Skyrmions are small whirls in the magnetization of magnetic materials. In the case of the present work, the skyrmions have a diameter of less than 100 nanometers. This corresponds roughly to a thousandth of a hair width. To prepare these skyrmions, scientists at Mainz University prepared small magnetic discs. "When we apply a specific external magnetic field, the magnetization in these discs creates whirls," said Dr. Benjamin Krüger working in the group of Professor Mathias Kläui at the Institute of Physics at JGU. These skyrmions were then excited by a magnetic field pulse to trace their motion.

The scientists were now able to experimentally investigate the dynamics of these structures on short time scales for the first time. For these investigations, a holographic measurement setup using short and highly energetic X-ray pulses was used. This technique, which was developed at TU Berlin, can take images with a temporal separation of less than a nanosecond. The position of the whirl can be determined from these images to be compared with theoretical calculations.

"The measurements show that the skyrmions move on a very complex trajectory, a so- called hypo-cycloid," says Krüger. The fact that the skyrmions move on such a curved trajectory means that they must possess some inertia. This is comparable to a car that continues to move, even though the gas pedal is no longer pressed. The inertia of the skyrmion stems from the fact that the whirl can deform. In this way it is able to store energy; after the excitation has stopped, this energy leads to a continuation of the motion.

"This effect has not been taken into account up to now, but it is important for the development of small magnetic memories," explained Professor Mathias Kläui. "This effect has to be taken into account to enable the distinct positioning of the skyrmion in the memory." Skyrmions may be important for the future of magnetic data storage and information processing. These whirls can be moved rapidly and reliably along nanowires or other structures in future memories. Such a memory would retain its information even when the power is switched off. In addition, it would not need to contain any moving parts, such as a read and write head in a hard disk drive.

A comparison with computer simulations at Mainz University showed that the type of motion depends a little on the shape of the disk in which the whirl is formed. In addition, there is only a small dependence on defects in the material. There is, however, a substantial dependence on the shape of the whirl, its so-called topology. This implies that the present findings can be extended to all skyrmions with the same topology.

"I am happy about the good collaboration with our colleagues and about the fact that the experimental measurements, as well as the theory, were done by members of the JGU Institute of Physics and the MAINZ Graduate School of Excellence together," Kläui added. Funding of the Graduate School Materials Science in Mainz was approved in the Excellence Initiative of the German federal and state governments in 2007 and was prolonged by an additional five years in the second round of the initiative in June 2012. MAINZ combines work groups from Johannes Gutenberg University Mainz (JGU), the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its research focuses is spintronics, a field in which collaborations with international partners play an important role.

Publication:
Felix Büttner et al.
Dynamics and inertia of skyrmionic spin structures
Nature Physics, 2 February 2015
DOI:10.1038/nphys3234

Further information:
Professor Dr. Mathias Kläui
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Graduate School of Excellence Materials Science in Mainz (MAINZ)
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-26984
fax +49 6131 39-26983
e-mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3234.html - Publication in Nature Physics ;
http://www.mainz.uni-mainz.de - Graduate School of Excellence MAINZ

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>