Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists develop world's first artificial cell-like spheres from natural proteins

18.10.2016

The team of researchers at Saarland University, led by Professor of Condensed Matter Physics Karin Jacobs, initially had something quite different in mind. Originally, the team set out to research and describe the characteristics of hydrophobins - a group of naturally occurring proteins. 'We noticed that the hydrophobins form colonies when they are placed in water.

They immediately arrange themselves into tightly packed structures at the interface between water and glass or between water and air,' explains Karin Jacobs. 'There must therefore be an attractive force acting between the individual hydrophobin molecules, otherwise they would not organize themselves into colonies.' But Professor Jacobs, research scientist Dr Hendrik Hähl and their team did not know how strong this force was.


Hydrophobins are a family of naturally occurring proteins with a hydrophilic part (blue) and a hydrophobic part (red). Like lipids, they form molecular bilayers and vesicles, which are small spherical structures with an outer bilayer boundary. In an aqueous environment (light blue), all of the water-repellent parts of the protein are located in the inside of the bilayer. In fatty or oily environments (yellow) the situation is reversed. As a result the interior of a vesicle can represent a protected space for transporting molecules that would otherwise be insoluble in the external (aqueous or oil-based) environment.

Credit: AG Jacobs

This is where the neighbouring research group led by Professor Ralf Seemann got involved. One of Seemann's research teams, which is headed by Dr Jean-Baptiste Fleury, studies processes that occur at the interfaces between two liquids. The research team set up a minute experimental arrangement with four tiny intersecting flow channels, like a crossroads, and allowed a stream of oil to flow continuously from one side of the crossing to the other.

From the other two side channels they injected 'fingers' of water which protruded into the crossing zone. As the hydrophobins tended to gather at the interface of the carrier medium, they were in this case arranged at the water-oil interface at the front of the fingers. The physicists then 'pushed' the two fingers closer and closer together in order to see when the attractive force took effect.

'At some point the two aqueous fingers suddenly coalesced to form a single stable interface consisting of two layers,' says Ralph Seemann. 'The weird thing is that it also functions the other way around, that is, when we use oil fingers to interrupt a continuous flow of water,' he explains. This finding is quite new, as up until now other molecules have only exhibited this sort of behaviour in the one or the other scenario. Normally proteins will orient themselves so that either their hydrophilic ('water loving') sides are in contact with the aqueous medium, or their hydrophobic ('water fearing') side is in contact with an oily medium. That a type of molecule can form stable bilayers in both environments is something wholly new.

Encouraged by these findings, the researchers decided to undertake a third phase of experiments to find out whether the stable bilayer could be reconfigured to form a small membrane-bound transport sac -- a vesicle. They attempted to inflate the stable membrane bilayer in a manner similar to creating a soap bubble, but using water rather than air. The experiment worked. The cell-like sphere with the outer bilayer of natural proteins was stable. 'That's something no one else has achieved,' says Jean-Baptiste Fleury, who carried out the successful experiments. Up until now it had only been possible to create monolayer membranes or vesicles from specially synthesized macromolecules. Vesicles made from a bilayer of naturally occurring proteins that can also be tailored for use in an aqueous or an oil-based environment are something quite new.

In subsequent work, the research scientists have also demonstrated that ion channels can be incorporated into these vesicles, allowing charged particles (ions) to be transported through the bilayer of hydrophobins in a manner identical to the way ions pass through the lipid bilayers of natural cells.

As a result, the physicists now have a basis for further research work, such as examining the means of achieving more precisely targeted drug delivery. In one potential scenario, the vesicles could be used to transport water-soluble molecules through an aqueous milieu or fat-soluble molecules through an oily environment. Dr Hendrik Hähl describes the method as follows: 'Essentially we are throwing a vesicle "cape" over the drug molecule. And because the "cape" is composed of naturally occurring molecules, vesicles such as these have the potential to be used in the human body.'

The results of this research work were a surprise. Originally, the goal was simply to measure the energy associated with the agglomeration of the hydrophobin molecules when they form colonies. But the discovery that hydrophobin bilayers could be formed in both orientations, opened the door to experiments designed to see whether vesicles could be formed. That one thing would lead to another in this way, offers an excellent example of the benefits of this type of basic, curiosity-driven research. 'The "discovery" of these vesicles is archetypal of this kind of fundamental research. Or to put it another way, if someone had said to us at the beginning: "Create these structures from a natural bilayer," we very probably wouldn't have succeeded,' says Professor Karin Jacobs in summary.

###

The article 'Pure Protein Bilayers and Vesicles from Native Fungal Hydrophobins' was published on October 14th 2016 in the journal Advanced Materials: http://onlinelibrary.wiley.com/doi/10.1002/adma.201602888/full.

Further information:

Prof. Dr. Karin Jacobs
Phone: 49681-302-71788
E-mail: k.jacobs@physik.uni-saarland.de

Dr. Hendrik Hähl
Phone: 49681-302-71703
E-mail: h.haehl@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Phone: 49681-302-71799
E-mail: r.seemann@physik.uni-saarland.de

Dr. Jean-Baptiste Fleury
Phone: 49681-302-71712
E-mail: jean-baptiste.fleury@physik.uni-saarland.de

http://www.uni-saarland.de 

Karin Jacobs | EurekAlert!

Further reports about: Advanced Materials artificial proteins vesicle

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>